Cho a,b,x,y thỏa mãn \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\) và x2+y2=1. cmr \(\dfrac{x^{2006}}{a^{1003}}+\dfrac{x^{2006}}{a^{1003}}=\dfrac{2}{\left(a+b\right)^{1003}}\)
Đây là một số bất đẳng thức trích từ một số đề thi vào chuyên,rất mong nhận được lời giải từ mọi người :
Bài 1:Cho x,y,z >0 thỏa mãn x+y+z=1
Tìm Max Q= \(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
Bài 2:Cho x,y,z>0 thỏa mãn :x+y+z=1
Chứng minh:\(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
Bài 3:Cho x,y,z>8
Tìm Min P=\(\dfrac{x}{\sqrt{y+z}-4}+\dfrac{y}{\sqrt{z+x}-4}+\dfrac{z}{\sqrt{x+y}-4}\)
Bài 4: Cho a,b,c>0 thỏa mãn (a+b)(b+c)(c+a)=1
CMR: ab+bc+ca\(\le\dfrac{3}{4}\)
1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.
a) Cho a = n3 + 2n và b = n4 + 3n2 +1. Với mỗi n ∈ N, hãy tìm ƯCLN (a,b)
b) Chứng minh rằng mọi số Nguyên dương x,y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chình phương.
a, Cho các số a,b,c,d nguyên dương đôi một khác nhau thoả mãn:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\). CMR: A = abcd là số chính phương
b, Giải phương trình: \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)
c, Cho x,y,z dương và x + y + z = 1. CMR: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
d, Tìm nghiệm nguyên dương của phương trình: \(\frac{2016}{x+y}+\frac{x}{y+2015}+\frac{y}{4031}+\frac{2015}{x+2016}=2\)
Cho x>y>z .CMR:
A=x4(y-z)+y4(z-x)+z4(x-y) luôn dương
Bài 1: a. Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
b. Cho x,y là các số thực khác thỏa mãn: x2-2xy+2y2-2y-2x+5=0
Tính P = xy+x+y+15/4xy
Bài 2: Cho a,b nguyên dương với a+1 và b+2007 đều chia hết cho 6. CMR: 4a+a+b chia hết cho 6
Bài 3: Cho a,b >0 thỏa mãn a+b=1
Tính GTNN của P =1/ab+40(a4+b4)(bài này dùng bất dẳng thức cô-si và bunhiacopxki)
Tìm các số nguyên x,y thỏa mãn : x3+y3=1995
CMR (a10+b10)(a2+b2)\(\ge\) (a8+b8)(a4+b4)
phân tích đa thức thành nhân tử
a,x^2+6xy+9y^2 4a^4-4a^2b^2+b^4 x^6+y^2-2x^3y
b,(x+y)^3-(x-y)^3 25x^4-10x^2y^2+y^4 -a^2-2a-1
c,27b^3-8a^3 x^3+9x^y+27xy^2+27y^3 16x^2-9(x+y)^2