Giải phương trình
A = x² + x - 17 = √[(x²-15)(x-3)] + √(x²-15) + √(x-3)
Giải phương trình: .
ĐKXĐ: \(x\ge15\)
Đặt \(\sqrt{x-15}=t\ge0\Rightarrow x=t^2+15\)
Pt trở thành:
\(t^2+15-t=17\Leftrightarrow t^2-t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-15}=2\Rightarrow x=19\)
Giải các phương trình sau :
a, (x-1)³+(2-x)(4+2x+x²)+3x(x+2)=17
b,(x+2)(x²-2x+4)-x(x²-2)=15
c,(x-3)³-(x-3)(x²+3x+9)+9(x+1)²=15
d,x(x-5)(x+5)-(x+2)(x²-2x+4)=3
a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 12
<=> x3 - 2x2 + x - x2 + 2x - 1 + 8 + 4x + 2x2 - 4x - 2x2 + 3x2 + 6x = 17
<=> 9x + 7 = 17
<=> 9x = 17 - 7
<=> 9x = 10
<=> x = \(\frac{10}{9}\)
b) (x + 2)(x2 - 2x + 4) - x(x2 - 2) = 15
<=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 + 2x = 15
<=> 2x + 8 = 15
<=> 2x = 15 - 8
<=> 2x = 7
<=> x = \(\frac{7}{2}\)
c) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x2 + 1)2 = 15
<=> x3 + 45x - 18 - x3 - 3x2 - 9x + 3x2 + 9x + 27 = 15
<=> 45x + 9 = 15
<=> 45x = 15 - 9
<=> 45x = 6
<=> x = \(\frac{6}{45}\)
d) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 3
<=> x3 - 25x - x3 + 2x2 - 4x - 8 = 3
<=> -25x - 8 = 3
<=> -25x = 3 + 8
<=> -25x = 11
<=> x = \(-\frac{11}{25}\)
a)\(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)
\(=>x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(=>9x+7=17=>9x=10=>x=\frac{10}{9}\)
Bạn đăng 1 lần 4 câu làm mik nản quá!
b)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(=>x^3+8-x^3+2x=15=>2x+8=15=>2x=7=>x=\frac{7}{2}\)
a) Giải phương trình: (x - 187)/13 + (x - 170)/15 + (x - 149)/17 + (x - 124)/19 = 10
\(\dfrac{x-187}{13}+\dfrac{x-170}{15}+\dfrac{x-149}{17}+\dfrac{x-124}{19}=10\)
`<=>(x-187)/13+(x-170)/15+(x-149)/17+(x-124)/19-10=0`
`<=>(x-187)/13-1+(x-170)/15-2+(x-149)/17-3+(x-124)/19-4=0`
`<=>(x-200)/13+(x-200)/15+(x-200)/17+(x-200)/19=0`
`<=>(x-200)(1/13+1/15+1/17+1/19)=0`
`<=>x-200=0(1/13+1/15+1/17+1/19>0)`
`<=>x=200`
\(=>\left(\dfrac{x-187}{13}-1\right)+\left(\dfrac{x-170}{15}-2\right)+\left(\dfrac{x-149}{17}-3\right)+\left(\dfrac{x-124}{19}-4\right)=0\)\(< =>\left(\dfrac{x-187}{13}-\dfrac{13}{13}\right)+\left(\dfrac{x-170}{15}-\dfrac{30}{15}\right)+\left(\dfrac{x-149}{17}-\dfrac{51}{17}\right)+\left(\dfrac{x-124}{19}-\dfrac{76}{19}\right)=0\)
\(< =>\left(\dfrac{x-200}{13}\right)+\left(\dfrac{x-200}{15}\right)+\left(\dfrac{x-200}{17}\right)+\left(\dfrac{x-200}{19}\right)=0\)
\(< =>\left(x-200\right)\left(\dfrac{1}{13}+\dfrac{1}{15}+\dfrac{1}{17}+\dfrac{1}{19}\right)=0\)
\(< =>x-200=0\)
<=>x=200
=>\(\left(\dfrac{x-187}{13}-1\right)+\left(\dfrac{x-170}{15}-2\right)+\left(\dfrac{x-149}{17}-3\right)+\left(\dfrac{x-124}{19}-4\right)=0\)
=>x-200=0
=>x=200
Giải phương trình sau: (x-90/10)+(x-76/12)+(x-58/14)+(x-36/16)+(x-15/17)=15
\(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
\(\Leftrightarrow\dfrac{x-90}{10}-1+\dfrac{x-76}{12}-2+\dfrac{x-58}{14}-3+\dfrac{x-36}{16}-4+\dfrac{x-15}{17}-5=0\)
\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\)
\(\Leftrightarrow x-100=0\) (do \(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\ne0\))
\(\Leftrightarrow x=100\)
Giải phương trình:
a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2)=17
b) (x - 3)3 - (x - 3)(x2 + 3x + 9)+9(x + 1)2=15
Gỉa phương trình \(x^2+x-17=\sqrt{\left(x^2-15\right).\left(x-3\right)}+\sqrt{x^2-15}+\sqrt{x-3}\)
Giải phương trình: 8x+15x=17x
Giải phương trình:
\(x^2+x-17=\sqrt{\left(x^2-15\right)\left(x-3\right)}+\sqrt{x^2-15}+\sqrt{x-3}\)
Lời giải:
ĐKXĐ: $x\geq \sqrt{15}$
Đặt $\sqrt{x^2-15}=a; \sqrt{x-3}=b(a,b\geq 0)$
PT đã cho trở thành:
$a^2+b^2+1=ab+a+b$
$\Leftrightarrow 2a^2+2b^2+2=2ab+2a+2b$
$\Leftrightarrow 2a^2+2b^2+2-2ab-2a-2b=0$
$\Leftrightarrow (a^2+b^2-2ab)+(a^2-2a+1)+(b^2-2b+1)=0$
$\Leftrightarrow (a-b)^2+(a-1)^2+(b-1)^2=0$
Thấy rằng $(a-b)^2\geq 0; (a-1)^2\geq 0; (b-1)^2\geq 0$ với mọi $a,b\geq 0$
Do đó để tổng của chúng bằng $0$ thì $(a-b)^2=(a-1)^2=(b-1)^2=0$
$\Rightarrow a=b=1$
$\Rightarrow a^2=b^2=1$
$\Rightarrow x^2-15=x-3=1$
$\Rightarrow x=4$ (thỏa mãn)
Vậy.......
Giải Phương Trình Sau:
\(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
Lời giải:
PT $\Leftrightarrow \frac{x-342}{15}-1+\frac{x-323}{17}-2+\frac{x-300}{19}-3+\frac{x-273}{21}-4=0$
$\Leftrightarrow \frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0$
$(x-357)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0$
Dễ thấy: $\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\neq 0$
$\Rightarrow x-357=0$
$\Rightarrow x=357$