Phân tích hằng đẳng thức
( x - 5 )2 - 2x
Phân tích thành hằng đẳng thức
(x - 5)2 - 2x
Phân tích đa thức thành nhân tử bằng phương pháp hằng đẳng thức:
9(x-3y)^2-25(2x+y)^2
\(9\left(x-3y\right)^2-25\left(2x+y\right)^2\)
\(=\left[3\left(x-3y\right)\right]^2-\left[5\left(2x+y\right)\right]^2\)
\(=\left(3x-9y\right)^2-\left(10x+5y\right)^2\)
\(=\left[3x-9y+10x+5y\right]\left[3x-9y-\left(10x+5y\right)\right]\)
\(=\left(13x-4y\right)\left(-7x-14y\right)\)
\(=-7\left(x+2y\right)\left(13x-4y\right)\)
9(x - 3y)² - 25(2x + y)²
= 3².(x - 3y)² - 5².(2x + y)²
= (3x - 9y)² - (10x + 5y)²
= (3x - 9y - 10x - 5y)(3x - 9y + 10x + 5y)
= (-7x - 14y)(13x - 4y)
= -7(x + 2y)(13x - 4y)
phân tích đa thức thành nhân tử sử dụng hằng đẳng thức x^4-x^2+2x-1
giúp mik nhé
\(x^4-x^2+2x-1\)
\(=x^4-\left(x^2-2x+1\right)\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
hk
tốt
Phân tích đa thức thành nhân tử(phương pháp dùng hằng đẳng thức)
36(x-y)-25(2x-1)2
đề sai rùi phải là : \(36\left(x-y\right)^2-25\left(2x-1\right)^2\)
\(=>\left[6\left(x-y\right)\right]^2-\left[5\left(2x-1\right)\right]^2=\left[6\left(x-y\right)-5\left(2x-1\right)\right]\left[6\left(x-y\right)+5\left(2x-1\right)\right]\)
\(=>\left(6x-6y-10x+5\right)\left(6x-6y+10x-5\right)=\left(5-4x-6y\right)\left(16x-6y-5\right)\)
Áp dụng HDT : x^2 -y^2 =(x-y) (x+y)
Ủng hộ = 1 cái t i c k nha cảm ơn
phân tích x + 10√x + 5 thành nhân tử (dùng hằng đẳng thức 1 và 2)
\(=x+10\sqrt{x}+25-20=\left(\sqrt{x}+5\right)^2-\left(2\sqrt{5}\right)^2\\ =\left(\sqrt{x}+5-2\sqrt{5}\right)\left(\sqrt{x}+5+2\sqrt{5}\right)\)
phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
a,(2x+5)^2-(x-9)^2
b,(3x+1)^2-4(x-2)^2
c,9(2x+3)^2-4(x+1)^2
d,4b^2c^2-(b^2+c^2-a^2)^2
a) \(\left(2x+5\right)^2\)\(-\left(x-9\right)^2\)
=\(\left(2x+5+x-9\right).\left(2x+5-x+9\right)\)
=\(\left(3x-4\right).\left(x+14\right)\)
Phân tích đa thức thành nhân tử (phương pháp dùng hằng đẳng thức)
36(x-y)-25(2x-1)2
36(x-y)2-25(2x-y)2
= 36(x-y)2 - 100(x-y)2
=(36-100)(x-y)2
= -64(x-y)2
Phân tích đa thức thành nhân tử bằng pp dùng hằng đẳng thức
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
TL:
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1+x-1\right)\left(2x+1-x+1\right)\)
\(=3x.\left(x+2\right)\)
\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
~Study well~ :)
Phân tích hằng đẳng thức: \(x^2\) - 2
\(x^2-2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)