a,b,c >0.CMR
\(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}>1\)
Cho a,b,c là các số ko âm thỏa mãn \(ab+ac+bc\ne0\).CMR
\(\sqrt{\frac{8ab+8ac+9bc}{(2b+c)(b+2c)}}+\sqrt{\frac{8ab+8bc+9ac}{(2a+c)(a+2c)}}+\sqrt{\frac{8ac+8bc+9ab}{(2a+b)(a+2b)}}\geq5\)
cho ba số a,b,c là các số thực dương . chứng minh :\(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
Em làm bên olm rồi nhưng lười gõ lại nên sẽ gửi link và chụp màn hình:D Đây là bài IMO 2001 chứ ko tầm thường đâu.
Link gốc: Câu hỏi của IMO 2001 - Toán lớp 9 - Học toán với OnlineMath
Cho a,b,c>0. CMR
\(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
Đặt \(P=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+abc}}\)
\(=\frac{a^2}{a\sqrt{a^2+8bc}}+\frac{b^2}{b\sqrt{b^2+8ca}}+\frac{c^2}{c\sqrt{c^2+abc}}\)
\(\ge\frac{\left(a+b+c\right)^2}{\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)}\)(Theo bất đẳng thức Bunhiacopxki dạng phân thức)
Ta có:
Suy ra
Ta cần chứng minh \(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\)
\(\Leftrightarrow a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\ge6abc\)
Đúng vì \(a^2b+b^2c+c^2a\ge3\sqrt[3]{a^3b^3c^3}=3abc\); \(ab^2+bc^2+ca^2\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Từ đó suy ra \(\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)\le\left(a+b+c\right)^2\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)}\ge1\)
Vậy \(=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+abc}}\ge1\)
Đẳng thức xảy ra khi a = b = c
Cho a, b, c là các số thực dương.
Chứng minh: \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
IMO, 2001
Đặt \(x=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\left(x;y;z\in\left(0;1\right)\right)\)
Để ý rằng \(\frac{a^2}{8bc}=\frac{x^2}{1-x^2};\frac{b^2}{8ac}=\frac{y^2}{1-y^2};\frac{c^2}{8ba}=\frac{z^2}{1-z^2}\)
=> \(\frac{1}{512}=\left(\frac{x^2}{1-x^2}\right)\left(\frac{y^2}{1-y^2}\right)\left(\frac{z^2}{1-z^2}\right)\)
Ta cần chứng minh \(x+y+z\ge1\)với \(x;y;z\in\left(0;1\right)\)và \(\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)=512\left(xyz\right)^2\left(1\right)\)
Giả sử ngược lại x+y+z<1
Theo BĐT AM-GM ta có:
\(\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)>\left[\left(x+y+z\right)^2-x^2\right]\left[\left(x+y+z\right)^2-y^2\right]\left[\left(x+y+z\right)^2-z^2\right]\)
\(=\left(x+x+y+z\right)\left(y+z\right)\left(x+y+z+y\right)\left(z+x\right)\left(z+z+x+y\right)\left(x+y\right)\)
\(\ge4\left(x^2yz\right)^{\frac{1}{4}}\cdot2\left(yz\right)^{\frac{1}{2}}\cdot4\left(y^2zx\right)^{\frac{1}{4}}\cdot2\left(xz\right)^{\frac{1}{2}}\cdot4\left(z^2xy\right)^{\frac{1}{4}}\cdot2\left(xy\right)^{\frac{1}{2}}=512\left(xyz\right)^2\)
Điều này mâu thuẫn với (1)
Vậy điều phản chứng là sai và ta có đpcm
Cho `a,b,c>0`.
`CMR:a/sqrt{a^2+8bc}+b/sqrt{b^2+8ac}+c/sqrt{c^2+8ab}>=1`
Áp dụng bất đẳng thức Holder ta có:
\(\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\right)\ge\left(a+b+c\right)^3\).
Do đó ta chỉ cần chứng minh \(\left(a+b+c\right)^3\ge a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge24abc\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\). Đây là một bđt rất quen thuộc
Không Holder thì Svacxo nha :v
Áp dụng BĐT Svacxo ta có :
\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}}\)
Ta có sẽ đi chứng minh :
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)
Thật vậy theo Bunhiacopxki có :
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)
\(\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)
Ta lại đi chứng minh :
\(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\)
\(\Leftrightarrow24abc\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) ( Đây là BĐT đúng )
Do đó nhân vào ta có đpcm.
cho a,b,c > 0 thỏa mãn a + b + c = 1. Tìm GTNN của
\(P=\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\)
Đây là bài IMO 2001 và không cần điều kiện \(a+b+c=1\)
Áp dụng Holder:
\(P.P.\left[a\left(a^2+8bc\right)+b\left(b^2+8ac\right)+c\left(c^2+8ab\right)\right]\ge\left(a+b+c\right)^3\)
\(\Leftrightarrow P^2\ge\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}=\dfrac{a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a^3+b^3+c^3+24abc}\)
\(\Rightarrow P^2\ge\dfrac{a^3+b^3+c^3+3.2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{a^3+b^3+c^3+24abc}=1\)
\(\Rightarrow P\ge1\)
cho a,b,c>0; \(a^2+b^2+c^2=3\)
cmr
\(\frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}+\frac{b^2+3bc+c^2}{\sqrt{6b^2+8bc+c^2}}+\frac{c^2+3ca+a^2}{\sqrt{6c^2+8ca+11a^2}}< =3\)
Đặt vế trái của bất đẳng thức là M
Cho a,b,c là các số thực dương thỏa mãn : a^2 + b^2 +c^2
CMR : \(\frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}+\frac{b^2+3bc+c^2}{\sqrt{6b^2+8bc+11c^2}}+\frac{c^2+3ca+a^2}{\sqrt{6c^2+8ca+11a^2}}\le3\)
Đấu đề bổ sung = 3 nhé
cho a;b;c là các số thực dương thỏa mãn \(a^2+b^2+c^2=\frac{1}{3}\)CMR:\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}\ge a+b+c\)