Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thu le
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 22:38

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{3x_1-2-3x_2+2}{x_1-x_2}=3\)

Vậy: Hàm số đồng biến trên R

Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 22:38

Vì 3>0 nên hs đồng biến trên R

nguyễn thị hương giang
9 tháng 11 2021 lúc 22:39

Hàm số \(y=f\left(x\right)=3x-2\) có \(a=3>0\) nên hàm số luôn đồng biến trên R.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2018 lúc 7:10

 Do x 1 < x 2  nên x 1 − x 2 < 0

Ta có:

f x 1 − f x 2 = 3 x 1 + 1 − 3 x 2 + 1 = 3 x 1 − x 2 < 0 ⇔ f x 1 < f x 2

Vậy hàm số y = 3x + 1 đồng biến trên R

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2018 lúc 10:06

Do x1 < x2 nên x1 - x2 < 0

Ta có: f(x1 ) - f(x2 )=(3x1 + 1) - (3x2 + 1) = 3(x1 - x2 ) < 0

⇔ f(x1 ) < f(x2 )

Vậy hàm số y = 3x + 1 đồng biến trên R

No Năme
Xem chi tiết
Trúc Giang
25 tháng 8 2021 lúc 9:18

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 12 2017 lúc 2:16

Cho x các giá trị bất kì x 1 ,   x 2 sao cho  x 1   <   x 2

= >   x 1   -   x 2   <   0

Ta có:

f x 1 = 3 x 1 ; f x 2 = 3 x 2 ⇒ f x 1 − f x 2 = 3 x 1 − 3 x 2 = 3 x 1 − x 2 < 0 ⇒ f x 1 < f x 2

Vậy với   x 1   <   x 2 ta được f ( x 1 )   <   f ( x 2 )  nên hàm số y = 3x đồng biến trên tập hợp số thực R.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 8 2019 lúc 12:59

Cho x các giá trị bất kì x1, x2 sao cho x1 < x2

=> x1 - x2 < 0

Ta có: f(x1) = 3x1 ; f( x2) = 3x2

=> f(x1) - f(x2) = 3x1 - 3x2 = 3(x1 - x2) < 0

=> f(x1) < f(x2)

Vậy với x1 < x2 ta được f(x1) < f(x2) nên hàm số y = 3x đồng biến trên tập hợp số thực R.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 6 2019 lúc 8:17

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mickey Nhi
Xem chi tiết
Huyên Lê Thị Mỹ
Xem chi tiết
Trần Ái Linh
19 tháng 7 2021 lúc 20:22

`a=m^2+m+1=m^2+2.m. 1/2 + (1/2)^2 + 3/4= (m+1/2)^2 + 3/4 >0 forall m`

`=> a>0 =>` Hàm số luôn đồng biến trên `RR`.

Nguyễn Huy Tú
19 tháng 7 2021 lúc 20:22

Để hàm số trên đồng biến khi \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Vậy hàm số luôn đồng biến trên R 

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 20:24

Ta có: \(m^2+m+1\)

\(=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\)

Do đó: Hàm số \(f\left(x\right)=\left(m^2+m+1\right)x+5\) luôn đồng biến trên R

KAl(SO4)2·12H2O
Xem chi tiết
Songoku Sky Fc11
20 tháng 11 2017 lúc 17:22

Cho hàm số: y = f(x) = 3x. Cho x hai giá trị bất kì x1, x2 sao cho x1 < x2. Chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đã cho đồng biến trên 
------------
thay x1 vào f(x) ta được f(x1)=3x1
thay x2 và f(x) ta được f(x2)=3x2
lấy f(x1)-f(x2)=3x1-3x2=3(x1-x2)(1)
ta có x1<x2=>x1-x2<0
=> (1) <0
<=>f(x1)-f(x2)<0
<=>f(x1)<f(x2)
=> hàm số đã cho đồng biến

                                                                               bài làm của Nguyễn Thị Thu Trang

KAl(SO4)2·12H2O
20 tháng 11 2017 lúc 17:23

Từ x1 < x2 và 3 > 0 suy ra 3x1< 3x2 hay f(x1) < f(x2 ).

Vậy hàm số đã cho đồng biến trên R.

P/s: Làm theo cách ngắn gọn nhé Songoku Sky Fc11.