G=(a+b)(1/a+1/b)với a,b>0và a+b=4
Tìm gtnn của G
cho a,b>0 thỏa mãn a*b=4
tìm GTNN của P=\(\dfrac{1}{1+a}\)+\(\dfrac{1}{1+b}\)
hỏi P đạt GTNN khi nào
Ta có: \(\left(a+b\right)^2\ge4ab=16\Rightarrow a+b\ge4\Rightarrow a+b-4\ge0\)
\(P=\dfrac{1+b+1+a}{\left(1+a\right)\left(1+b\right)}=\dfrac{a+b+2}{ab+a+b+1}=\dfrac{a+b+2}{a+b+5}\)
\(P=\dfrac{3a+3b+6}{3\left(a+b+5\right)}=\dfrac{2\left(a+b+5\right)+\left(a+b-4\right)}{3\left(a+b+5\right)}\ge\dfrac{2\left(a+b+5\right)}{3\left(a+b+5\right)}=\dfrac{2}{3}\)
\(P_{min}=\dfrac{2}{3}\) khi \(a=b=2\)
cho a,b,c,d>0, a+b+c+d=4
tìm gtnn: S=1/(a^2+1)+1/(b^2+1)+1/(c^2+1)+1/(d^2+1)
\(S=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}+\dfrac{1}{d^2+1}\)
\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
\(tương\) \(tự\) \(với:\dfrac{1}{b^2+1};\dfrac{1}{c^2+1};\dfrac{1}{d^2+1}\)
\(\Rightarrow S\ge1-\dfrac{a}{2}+1-\dfrac{b}{2}+1-\dfrac{c}{2}+1-\dfrac{d}{2}=4-\left(\dfrac{a+b+c+d}{2}\right)=4-\dfrac{4}{2}=2\)
\(\Rightarrow min_S=2\Leftrightarrow a=b=c=d=1\)
cho a b là các số thực thỏa mãn\(2a^2\)+ \(\dfrac{\text{1}}{\text{a^2}}\)+\(\dfrac{\text{b^2}}{\text{4}}\)=4
tìm GTNN của biểu thức M=ab
\(4=2a^2+\dfrac{1}{a^2}+\dfrac{b^2}{4}=\left(a^2+\dfrac{1}{a^2}-2\right)+\left(a^2+\dfrac{b^2}{4}+ab\right)-ab+2\)
\(\Rightarrow4=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-ab+2\)
\(\Rightarrow ab=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-2\ge-2\)
\(M_{min}=-2\) khi \(\left\{{}\begin{matrix}a-\dfrac{1}{a}=0\\a+\dfrac{b}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;-2\right);\left(-1;2\right)\)
cho a,b là số dương thỏa mãn a+b=4
tìm gtnn của A=\(\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\)
MỌI NGỜI ƠI EM VẦN RẤT GẤP Ạ
Ta có: \(A=\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\ge\dfrac{\left(a+b\right)^2}{a+b+8}\) (BĐT Cauchy-Schwarz)
\(=\dfrac{4^2}{4+8}=\dfrac{4}{3}\)
\(\Rightarrow A\ge\dfrac{4}{3}\Rightarrow A_{min}=\dfrac{4}{3}\) khi \(\dfrac{a}{a+4}=\dfrac{b}{b+4}\)
\(\Rightarrow ab+4a=ab+4b\Rightarrow a=b=2\)
\(A=\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\ge\dfrac{\left(a+b\right)^2}{a+b+8}=\dfrac{4^2}{4+8}=\dfrac{4}{3}\)
\(A_{min}=\dfrac{4}{3}\) khi \(a=b=2\)
Tìm giá trị lớn nhất của C=(√a+√b)2.với a,b>0và a+b<=1
Với Online Math
Học mà như chơi, chơi mà vẫn học
Cho a>1, b>1 . Tìm GTNN của biểu thức \(G=\frac{a^2}{b-1}+\frac{b^2}{a-1}\)
Xét : a^2/b-1 + 4.(b-1) >= \(2\sqrt{\frac{a^2}{b-1}.4.\left(b-1\right)}\) = 4a
Tương tự : b^2/a-1 + 4.(a-1) >= 4b
<=> G + 4.(a-1)+(4.(b-1) >= 4a+4b
<=> G + 4a+4b-8 >= 4a+4b
<=> G >= 4a+4b-4a-4b+8 = 8
Dấu "=" xảy ra <=> a^2/b-1 = 4.(b-1) và b^2/a-1 = 4.(a-1) <=> a=b=2
Vậy GTNN của G = 8 <=> a=b=2
Tk mk nha
đúng rồi
đúng
đúng
100000000000000000000000000000000000000000000000000%
Tìm GTNN của biểu thức G
\(G=4a^2+b^2-4ab+4a-2b\) với \(a-b=1\)
Lời giải:
Thay \(a=b+1\) ta có:
\(G=4(b+1)^2+b^2-4b(b+1)+4(b+1)-2b\)
Khai triển thu được:
\(G=b^2+6b+8\)
\(\Leftrightarrow G=(b+3)^2-1\geq -1\)
Do đó \(G_{\min}=-1\). Dấu bằng xảy ra khi \(b=-3\Leftrightarrow a=-2\)
\(G=\left[\left(2a\right)^2-2\left(2a\right).b+b^2\right]+2\left(2a-b\right)\)
\(G=\left(2a-b\right)^2+2\left(2a-b\right)\)
\(G=\left(a+a-b\right)^2+2\left(a+a-b\right)\)
\(G=\left(a+1\right)^2+2\left(a+1\right)\)
\(G=\left(a+1\right)^2+2\left(a+1\right)+1-1\)
\(G=\left(a+1+1\right)^2-1\)
\(G=\left(a+2\right)^2-1\)
\(G\ge-1\)
Đẳng thức khi \(a=-2;b=-3\)
\(G=4a^2+b^2-\text{4ab+4a-2b}\)
\(\Rightarrow G=\left(2a-b\right)^2+2\left(2a-b\right)\)=\(\left(2a-b\right)\left(2a-b+2\right)\)
\(\Rightarrow G=\left(a+a-b\right)\left(a+a-b+2\right)\)
Thay a-b=1 vào \(\Rightarrow G=\left(a+1\right)\left(a+3\right)\Rightarrow G=\left(a+2-1\right)\left(a+2+1\right)\)
\(\Rightarrow G=\left(a+2\right)^2-1\ge-1\Rightarrow MinG=-1\)
Dấu "=" xảy ra khi x=-2
Vậy Min G=-1
Cho a; b thuộc R. Tìm GTNN của G= \(\sqrt{a^2+\left(1-b\right)^2}+\sqrt{b^2+\left(1-a\right)^2}\)
cho a,b là 2 số thực dương sao cho (\(\sqrt{a}\)+1)(\(\sqrt{b}\)+1)≥4
tìm min P= \(\dfrac{a^2}{b}\)+ \(\dfrac{b^2}{a}\)