tìm GTNN của M=\(5x^2+y^2+z^2-4x-2xy-z-1\)
tìm gtnn của M=\(5x^2+y^2+z^2-4x-2xy-z-1\)
\(M=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(z^2-z+\frac{1}{4}\right)-\frac{5}{4}\)
\(M=\left(x-y\right)^2+\left(2x-1\right)+\left(z-\frac{1}{2}\right)^2-\frac{5}{4}>=-\frac{5}{4}\)
=>M min\(=-\frac{5}{4}\)
<=>x=y=z=1/2
tìm gtnn \(5x^2+y^2+z^2-4x-2xy-z-1\)
Ta có:A = 5x2 + y2 + z2 - 4x - 2xy - z - 1
A = (x2 - 2xy + y2) + (4x2 - 4x + 1) + (z2 - z + 1/4) - 9/4
A = (x - y)2 + (2x - 1)2 + (z - 1/2)2 - 9/4 \(\ge\)- 9/4 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\2x-1=0\\z-\frac{1}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=\frac{1}{2}\\z=\frac{1}{2}\end{cases}}\) <=> x = y = z = 1/2
Vậy MinA = -9/4 khi x = y = z = 1/2
=)) mình cũng làm ntn mà rút gọn ngu -9/4=-3/2 kq sai :v
tìm GTNN của biểu thức
a)B= 2x^2-2xy+5y^2+5
b)C= 5x^2+5y^2+8xy+2y-2x+2020
c)D= 5x^2+y^2+z^2-4x-2xy-z-1
tìm x,y,z để C=5x2+y2+z2-4x-2xy-z-1 đạt GTNN
Ta có \(C=5x^2+y^2+z^2-4x-2xy-z-1\)
\(=x^2-2xy+y^2+4x^2-4x+1+z^2-z+\dfrac{1}{4}-1-\dfrac{1}{4}-1\)
\(=\left(x-y\right)^2+\left(2x-1\right)^2+\left(z-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
Ta có \(\left(x-y\right)^2\ge0;\left(2x-1\right)^2\ge0;\left(z-\dfrac{1}{2}\right)^2\ge0\)
=> \(C\ge-\dfrac{9}{4}\)
=> C đạt giá trị nhỏ nhất là \(-\dfrac{9}{4}\) khi
\(\left\{{}\begin{matrix}x-y=0\\2x-1=0\\z-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y=\dfrac{1}{2}\\x=\dfrac{1}{2}\\z=\dfrac{1}{2}\end{matrix}\right.\)
=> \(x=y=z=\dfrac{1}{2}\)
Vậy MinC = \(-\dfrac{9}{4}\)khi x=y=z = \(\dfrac{1}{2}\)
mọi người giúp mk vs ạ
câu 1: tìm GTNN của M= x^2-5x+y^2+xy-4y+2014
câu 2: cho x,y,z>0 và x+y+z=1
tìm GTNN của S= 1/x +4/y +y/z
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
cho x^2 +y^2+z^2=200 . Tìm GTNN của M=2xy-yz-zx
ta có
\(x^2+y^2+z^2\)\(=200\)
\(2xy-yz-zx=M\)
\(\Leftrightarrow M+200=x^2+y^2+z^2+2xy-yz-zx\)
\(\Leftrightarrow M+200=\left(x+y\right)^2-z\left(x+y\right)+z^2\)
\(\Leftrightarrow\left(x+y-\frac{z}{2}\right)^2+\frac{3}{4}z^2\ge0\)
\(\Leftrightarrow M\ge-200\)
MỌI NGƯỜI GIÚP MK VS Ạ , mk cần rất gấp . cảm ơn các bạn nha
câu 1, tìm GTNN của M=x^2-5x+y^2-xy-5x-4y+2014
câu 2, cho x,y,z>0 và x+y+z=1. Tìm GTNN của S=1/x +4/y + y/z
câu 3. cho pt x^2-5x+m-2=0
tìm m để pt có 2 nghiệm dương phân biệt thõa mãn \(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
2/ \(S=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)
Câu 1 tìm x
x(x-2)(x+2)-(x+2)(x^2-2x+4)=4
Câu 2 tìm gtnn của biểu thức
a)A=4x^2-12x+46/5
b)B=x^2-2xy+6y^2-12x+2y+45
c)P=(x+y+z)(1/x+1/y+1/z) biết x,y,z là các số dương
Cần gấp .ai giúp mik vs
Câu 1:
\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)
\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)
\(\Leftrightarrow x^3-4x-x^3-8=4\)
\(\Leftrightarrow-4x-8=4\)
\(\Leftrightarrow-4x=12\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\)
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)