\(M=5x^2+y^2+z^2-4x-2xy-z-1\)
\(=\left(4x^2-4x+1\right)+\left(x^2-2xy+y^2\right)+\left(z^2-z+\dfrac{1}{4}\right)-\dfrac{9}{4}\)
\(=\left(2x-1\right)^2+\left(x-y\right)^2+\left(z-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy \(M_{min}=-\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\) ; \(y=\dfrac{1}{2}\)