Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Đan Anh
31 tháng 10 2018 lúc 20:42

\(M=5x^2+y^2+z^2-4x-2xy-z-1\)

\(=\left(4x^2-4x+1\right)+\left(x^2-2xy+y^2\right)+\left(z^2-z+\dfrac{1}{4}\right)-\dfrac{9}{4}\)

\(=\left(2x-1\right)^2+\left(x-y\right)^2+\left(z-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy \(M_{min}=-\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\) ; \(y=\dfrac{1}{2}\)

Xem chi tiết
Edogawa Conan
18 tháng 7 2020 lúc 8:27

Ta có:A =  5x2 + y2 + z2 - 4x - 2xy - z - 1

A = (x2 - 2xy + y2) + (4x2 - 4x + 1) + (z2 - z + 1/4) - 9/4

A = (x - y)2 + (2x - 1)2 + (z - 1/2)2 - 9/4 \(\ge\)- 9/4 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\2x-1=0\\z-\frac{1}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=\frac{1}{2}\\z=\frac{1}{2}\end{cases}}\) <=> x =  y = z = 1/2

Vậy MinA = -9/4 khi x = y = z = 1/2

Khách vãng lai đã xóa

=)) mình cũng làm ntn mà rút gọn ngu -9/4=-3/2 kq sai :v

Khách vãng lai đã xóa
phi thảo lan
Xem chi tiết
Duy Cr
Xem chi tiết
Ánh Lê
12 tháng 2 2019 lúc 14:37

Ta có \(C=5x^2+y^2+z^2-4x-2xy-z-1\)

\(=x^2-2xy+y^2+4x^2-4x+1+z^2-z+\dfrac{1}{4}-1-\dfrac{1}{4}-1\)

\(=\left(x-y\right)^2+\left(2x-1\right)^2+\left(z-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

Ta có \(\left(x-y\right)^2\ge0;\left(2x-1\right)^2\ge0;\left(z-\dfrac{1}{2}\right)^2\ge0\)

=> \(C\ge-\dfrac{9}{4}\)

=> C đạt giá trị nhỏ nhất là \(-\dfrac{9}{4}\) khi

\(\left\{{}\begin{matrix}x-y=0\\2x-1=0\\z-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y=\dfrac{1}{2}\\x=\dfrac{1}{2}\\z=\dfrac{1}{2}\end{matrix}\right.\)

=> \(x=y=z=\dfrac{1}{2}\)

Vậy MinC = \(-\dfrac{9}{4}\)khi x=y=z = \(\dfrac{1}{2}\)

lan vũ
Xem chi tiết
Lương Hữu Thành
6 tháng 6 2018 lúc 14:08

câu 1

x^2 -5x +y^2+xy -4y +2014 

=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010

=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007

=(y+1/2x-2)^2 +3/4(x-2)^2 +2007

GTNN là 2007<=> x=2 và y=1

Thu Ha Tran
Xem chi tiết

ta có 

\(x^2+y^2+z^2\)\(=200\)

\(2xy-yz-zx=M\)

\(\Leftrightarrow M+200=x^2+y^2+z^2+2xy-yz-zx\)

\(\Leftrightarrow M+200=\left(x+y\right)^2-z\left(x+y\right)+z^2\)

\(\Leftrightarrow\left(x+y-\frac{z}{2}\right)^2+\frac{3}{4}z^2\ge0\)

\(\Leftrightarrow M\ge-200\)

Khách vãng lai đã xóa
lan vũ
Xem chi tiết
alibaba nguyễn
6 tháng 6 2018 lúc 10:02

Điều kiện có 2 nghiệm phân biệt tự làm nha

Theo vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)

\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)

\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)

\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)

Làm nốt nhé

NắngNứng 範城
6 tháng 6 2018 lúc 7:51

Câu 1:

M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)

=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)

=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)

\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)

\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)

alibaba nguyễn
6 tháng 6 2018 lúc 9:58

2/ \(S=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)

Nguyễn Thị Thơm
Xem chi tiết
Nobi Nobita
1 tháng 11 2020 lúc 9:26

Câu 1: 

\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)

\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)

\(\Leftrightarrow x^3-4x-x^3-8=4\)

\(\Leftrightarrow-4x-8=4\)

\(\Leftrightarrow-4x=12\)

\(\Leftrightarrow x=-3\)

Vậy \(x=-3\)

Khách vãng lai đã xóa
Như Quỳnh Phạm
Xem chi tiết
Edogawa Conan
6 tháng 9 2021 lúc 22:49

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
6 tháng 9 2021 lúc 22:51

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Edogawa Conan
6 tháng 9 2021 lúc 22:51

d)3x2+3y2+3xy-3x+3y+3=0

⇔ 6x2+6y2+6xy-6x+6y+6=0

⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)