chứng minh phương trình sau không có nghiệm nguyên:
7^x=2^4-3^z-1
Cho số nguyên a Chứng minh a^2+1 có ước nguyên tố dạng 4k + 3 Từ đó suy ra phương trình sau không có nghiệm nguyên
a, 4xy-x-y=z^2
b, x^3-y^3=7
chứng minh rằng phương trình sau không có nghiệm nguyên: x^2+y^2+z^2=2015
Lời giải:
Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$
Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.
Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên
$x^2+y^2+z^2=2015$
$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$
$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$
$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$
Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.
Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.
chứng minh rằng phương trình sau không có nghiệm nguyên: x^2+y^2+z^2=2015
1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
Chứng minh phương trình x^3+y^3+z^3=5^1111 không có nghiệm nguyên
Chứng minh rằng phương trình sau không có nghiệm nguyên: \(x^2+y^2+z^2=1999.\)
Vì \(x^2,y^2,z^2\)là các số chính phương nên chia 8 dư 0, 1, 4.
Suy ra \(x^2+y^2+z^2\)chia 8 được số dư là một trong các số : 0, 1,,3, 4, 6.
Mà 1999 chia 8 dư 7
Suy ra phương trình không có nghiệm nguyên
chứng minh rằng phương trình sau không có nghiệm nguyên :x^3 - y^2 +2009x -1 =0
Chứng minh rằng phương trình sau không có nghiệm với mọi x, y, z là các số nguyên dương nguyên tố cùng nhau. x4 + y4 = z2
*Bài đăng mang tính chất đố vui
Chứng minh rằng : Các phương trình sau có nghiệm nguyên không?
a, 3*x^2 - 4*x^2 =13
b, x^2 +y^2 =2015