Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Holmes Sherlock
Xem chi tiết
Trên con đường thành côn...
10 tháng 8 2021 lúc 12:07

undefined

Dâu Sún
Xem chi tiết
Trần Đức Thắng
9 tháng 6 2015 lúc 22:05

Gọi \(\frac{a}{b}=\frac{c}{d}=x\Rightarrow a=bx;c=dx\)

Thay vào vế trái ta được 

\(\frac{3a-5c}{4a+7c}=\frac{3.bx-5.dx}{4.bx+7.dx}=\frac{x\left(3b-5d\right)}{x\left(4b+7d\right)}=\frac{3b-5d}{4b+7d}\)

Vậy vế trái bằng vế phải

Huỳnh Đức Lê
10 tháng 6 2015 lúc 8:02

Ta có:\(\frac{a}{b}=\frac{c}{d}=\frac{3a-5c}{3b-5d}\left(1\right)\)

Ta lại có:\(\frac{a}{b}=\frac{c}{d}=>\frac{4a+7c}{4b+7d}\left(2\right)\)

Từ (1) và (2),suy ra : \(\frac{3a-5c}{4a+7c}=\frac{3b-5d}{4b+7d}\)

Cách của mình cũng đúng nhưng khác cách làm của thang Tam thôi

Duong Thi Nhuong
Xem chi tiết
Hung nguyen
29 tháng 3 2017 lúc 8:59

Ta có:

a/ \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a+2c}{3b+2d}\)

b/ \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{-2a}{-2b}=\dfrac{7c}{7d}=\dfrac{-2a+7c}{-2b+7d}\)

PS: Xong

Hung nguyen
29 tháng 3 2017 lúc 8:43

Y chang câu mới giải nhé

___Kiều My___
Xem chi tiết
Manh Hung
21 tháng 7 2016 lúc 15:33

Mik Chưa học tỉ lệ thức

jgdfkgjnfd
Xem chi tiết
Nguyễn Đình Anh
23 tháng 7 2017 lúc 9:26

đề sai

Hoàng Anh Phoenix
7 tháng 11 2017 lúc 22:16

Trong nâng cao chuyên đề và nâng cao phát triển

hế hế 

troll

lololololool

Vũ Đăng Tú
24 tháng 10 2019 lúc 20:33

dùng câu hỏi tương tự ấy

Khách vãng lai đã xóa
Vũ Lê Anh
Xem chi tiết
Vũ Lê Anh
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2022 lúc 1:22

Đề sai rồi bạn

Yoriichi Tsugikuni
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 20:52

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)