x²(11x-2)+x²(x-1)-3x(4x²-x-1)
Cho biểu thức B=(x/x^2-x-6 - x-1/3x^2-4x-15):x^4-2x^2+1/3x^2+11x+10. Rút gọn B
\(y=\frac{\frac{^x}{x^2}-x-6-x-\frac{1}{3}x^2-4x-15}{x^4}-2x^2+\frac{1}{3}x^2+11x+10b\)
\(y=\frac{-\left(5x^7-33x^6-30bx^5+x^3+18x^2+63x-3\right)}{3x^5}\)
Cho biểu thức B=(x/x^2-x-6 - x-1/3x^2-4x-15) : x^4-2x^2+1/3x^2+11x+10. Rút gọn B
\(\dfrac{2x}{x^2-1}+\dfrac{3}{x^2-3x+2}=\dfrac{4x}{x^2+3x+2}\)
\(\dfrac{3}{x^3-6x^2+11x-6}+\dfrac{2x}{x^2-5x+6}=\dfrac{1}{x^2-3x+2}\)
Giải phương trình
PT 2
\(\Leftrightarrow\dfrac{3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\dfrac{2x}{\left(x-2\right)\left(x-3\right)}-\dfrac{1}{\left(x-1\right)\left(x-2\right)}=0\) ( \(x\ne1;x\ne2;x\ne3\))
\(\Leftrightarrow\dfrac{3+2x^2-2x-x+3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
\(\Rightarrow2x^2-3x+6=0\)
=> PT vô nghiệm.
Thực hiện các phép tính sau: a) (x²/x²+3x)+(3/x+3)+(3/x) b) (2/x+2)+(-4/2-x)+(5x+2/4-x²) c) (1/x-y)+(3xy/y³-x³)+(x-y/x²+xy+y²) d) (3-3x/2x)+(3x-1/2x-1)+(11x-5/2x-4x²)
Giải các phương trình sau: a) 5x+9 = 2x b) (x+1).(4x-3)= (2x+5)(x+1) c) x/x-2 +x/x+2 = 4x/ x²-4 d) 11x-9= 5x+3 e) (2x+3)(3x-4) =0
c) \(\dfrac{x}{x-2}+\dfrac{x}{x+2}=\dfrac{4x}{x^2-4}.ĐKXĐ:x\ne2;-2\)
<=>\(\dfrac{x\left(x+2\right)}{x^2-4}+\dfrac{x\left(x-2\right)}{x^2-4}=\dfrac{4x}{x^2-4}\)
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>\(\left[{}\begin{matrix}2x=0< =>x=0\\x-2=0< =>x=2\left(loại\right)\end{matrix}\right.\)
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=> \(\left[{}\begin{matrix}2x+3=0< =>x=\dfrac{-3}{2}\\3x-4=0< =>x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={\(\dfrac{-3}{2};\dfrac{4}{3}\)}
a) 5x+9 =2x
<=> 5x-2x=9
<=> 3x=9
<=> x=3
Vậy pt trên có nghiệm là S={3}
b) (x+1)(4x-3)=(2x+5)(x+1)
<=> (x+1)(4x-3)-(2x+5)(x+1)=0
<=>(x+1)(2x-8)=0
<=>\(\left[{}\begin{matrix}x+1=0< =>x=-1\\2x-8=0< =>2x=8< =>x=4\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={-1;4}
c)
<=>
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=>
Vậy pt trên có tập nghiệm là S={}
Bài 1: Rút gọn
B= x^2.(11x-2) + x^2.(x-1) - 3x.(4x^2 - x - 2)
Theo đề ra ta có:
= 11x3-2x2+x3-x2-12x3+3x2+6x
= 6x
Vậy biểu thức khi được rút gọn bằng 6 ^^
rút gọn
B\(\left(\frac{x}{x^2-x-6}-\frac{x-1}{3x^2-4x-15}\right):\frac{x^4-2x^2+1}{3x^2+11x+10}.\left(x^2-2x+1\right)\)
Chép đề đúng chưa bạn? 2 phân số đầu có ngoặc không vậy?
Bạn tự tìm ĐKXĐ nhé!
\(B=\left(\frac{x}{x^2-x-6}-\frac{x-1}{3x^2-4x-15}\right):\frac{x^4-2x^2+1}{3x^2+11x+10}.\left(x^2-2x+1\right)\)
\(=\left(\frac{x}{\left(x-3\right)\left(x+2\right)}-\frac{x-1}{\left(x-3\right)\left(3x+5\right)}\right):\frac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}.\left(x-1\right)^2\)
\(=\left(\frac{\left(3x+5\right)x}{\left(x-3\right)\left(x+2\right)\left(3x+5\right)}-\frac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right).\frac{\left(3x+5\right)\left(x+2\right)}{\left(x-1\right)^2\left(x+1\right)^2}.\left(x-1\right)^2\)
\(=\frac{3x^2+5x-\left(x^2+2x-x-2\right)}{\left(x-3\right)\left(x+2\right)\left(3x+5\right)}.\frac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2}\)
\(=\frac{3x^2+5x-x^2-2x+x+2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2x^2+4x+2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2\left(x+1\right)^2}{\left(x-3\right)\left(x+1\right)^2}\)
\(=\frac{2}{x-3}\)
Vậy...
Cho biểu thức C = (\(\dfrac{x}{x^2-x-6}\)-\(\dfrac{x-1}{3x^2-4x-15}\)) : \(\dfrac{x^4-2x^2+1}{3x^2+11x+10}\).(\(x^2\)-\(2x\)+1)
a) Rút gọn C
b)Tìm GTBT C với x = 2003
c) CMR C>0 khi x>3
a) \(C=\left(\dfrac{x}{x^2-x-6}-\dfrac{x-1}{3x^2-4x-15}\right):\dfrac{x^4-2x^2+1}{3x^2+11x+10}\cdot\left(x^2-2x+1\right)\) (ĐK: \(x\ne-\dfrac{5}{3};x\ne3;x\ne-2;x\ne1\))
\(C=\left[\dfrac{x}{\left(x-3\right)\left(x+2\right)}-\dfrac{x-1}{\left(x-3\right)\left(3x+5\right)}\right]:\dfrac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}\cdot\left(x-1\right)^2\)
\(C=\left[\dfrac{x\left(3x+5\right)}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right]\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{3x^2+5x-x^2-2x+x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{2x^2+4x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2\left(x+1\right)^2}{\left(3x+5\right)\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}\)
b) Thay x = 2003 ta có:
\(C=\dfrac{2}{\left(2003-1\right)^4\left(2003-3\right)}=\dfrac{2}{2002^4\cdot2000}=\dfrac{1}{2002^4\cdot1000}\)
c) \(C>0\) khi:
\(\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}>0\) mà: \(\left\{{}\begin{matrix}2>0\\\left(x-1\right)^4>0\end{matrix}\right.\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\) (đpcm)
cho
f(x)=4x^2-11x+8x^3+4x^4+5+2x^2 và g(x)=-5x^3-6x^2-4x^4+9+5x-3x^3.Tính
F(-1)+g(-1) và f(1)-g(1)