Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bui Thi Khanh Linh
Xem chi tiết
Đinh Tuấn Việt
20 tháng 10 2015 lúc 9:39

2010x2 + -1x + -2011 = 0

<=> -2011 + -1x + 2010x2 = 0

<=> -2011 + -1x + 2010x2 = 0

<=> (-1 + -1x)(2011 + -2010x) = 0

=> -1 + -1x = 0 hoặc 2011 + (-2010x) = 0

=> x = -1 hoặc x = \(\frac{2011}{2010}\)

Bùi Đức Anh
Xem chi tiết
missing you =
21 tháng 5 2021 lúc 21:55

mik nghĩ đề sai lẽ ra phải là P=\(\dfrac{2010+2011\sqrt{1-x^2}+2012}{\sqrt{1-x^2}}\)(\(-1\le x\le1\))

P=\(\dfrac{2010}{\sqrt{1-x^2}}+2011+\dfrac{2012}{\sqrt{1-x^2}}=\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012}{\sqrt{\left(1-x\right).\left(1+x\right)}}+2011\)

áp dụng BDT CÔ SI \(\sqrt{\left(1-x\right)\left(1+x\right)}\le\dfrac{1-x+1+x}{2}=1\)

=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2010\left(1\right)\)

tương tự \(\dfrac{2012}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2012\left(2\right)\)

cộng vế (1)(2)=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012.}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2012+2010=4022\)

=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012}{\sqrt{\left(1+x\right)\left(1-x\right)}}+2011\ge4022+2011=6033\)

dấu = xảy ra khi và chỉ khi x=0

vậy min P=6033

Nguyễn Lê Việt ANh
Xem chi tiết
Hải Ngân
4 tháng 1 2018 lúc 20:51

Ta có: x = 2011 \(\Rightarrow\) 2010 = x - 1

\(A=x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)

\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)

\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)

\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)

\(=x+1\)

\(=2011+1\)

\(=2012.\)

Hằng Nguyễn
4 tháng 1 2018 lúc 8:55

x=2011

=> 2010= x-1

A = x^2011- (x-1) x^2010- (x-1).x^2009-.....- (x-1).x+1

= x^2011-x^2011+x^2010- x^2010+x^2009..x^2.-x^2+x+1

= x+1

=(x-1)+2= 2010+2=2012

Ngô Bảo Châu
Xem chi tiết
Leo Nguyễn
8 tháng 12 2016 lúc 20:15

ĐS: 2011x+1

Đúng ko ? :p

s2 Lắc Lư  s2
Xem chi tiết
Fan SNSD
Xem chi tiết
Fan SNSD
18 tháng 3 2020 lúc 11:21

x.x^4 nha

Khách vãng lai đã xóa
Fan SNSD
Xem chi tiết
Trần Quốc Khanh
18 tháng 3 2020 lúc 14:26

-Ta thấy \(x^4+x^2+1=x^4-x+x^2+x+1=\left(x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

Vậy PT sẽ thành

\(\frac{2010x\left(x^3+1\right)}{x\left(x^4+x^2+1\right)}+\frac{2010x\left(x^3-1\right)}{x\left(x^4+x^2+1\right)}=\frac{2011}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow2.2010x^4=2011\Leftrightarrow x=...\)

Khách vãng lai đã xóa
Vu Xuan Son
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết
lê thị hương giang
4 tháng 1 2018 lúc 11:08

Bài 2:

Ta có : \(2010=2011-1=x-1\)

Thay \(2010=x-1\) vào biểu thức A ,có :

\(x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)

\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)

\(=x+1\)

\(=2011+1=2012\)

Vậy giá trị biểu thức A là 2012

Bài 3:

\(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Rightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\left(1\right)\)

Tương tự :

\(a+b+c=0\)

\(\Rightarrow a+c=-b\)

\(\Rightarrow\left(a+c\right)^2=\left(-b\right)^2\)

\(\Rightarrow a^2+2ac+c^2=b^2\)

\(\Rightarrow a^2+c^2-b^2=-2ac\left(2\right)\)

\(a+b+c=0\)

\(\Rightarrow b+c=-a\)

\(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)

\(\Rightarrow b^2+c^2-a^2=-2bc\left(3\right)\)

Từ (1)(2)(3)

\(\Rightarrow A=\dfrac{-ab}{2ab}+\dfrac{-bc}{2bc}+\dfrac{-ac}{2ac}\)

\(=\dfrac{-abc-abc-abc}{2abc}=\dfrac{-3abc}{2abc}=-\dfrac{3}{2}\)