1.Tìm GTLN của P=\(\dfrac{x^2}{1+x^4}\)
2.Cho x=2011.Tính giá trị của biểu thức:
A=\(x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
3.Cho 3 số a,b,c đều khác 0 và a+b+c=0
Tính giá trị của biểu thức:A=\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ac}{a^2+c^2-b^2}\)
Các bạn làm bài nào cũng đc nha giúp mình nhanh lên nha
Bài 2:
Ta có : \(2010=2011-1=x-1\)
Thay \(2010=x-1\) vào biểu thức A ,có :
\(x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1=2012\)
Vậy giá trị biểu thức A là 2012
Bài 3:
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\left(1\right)\)
Tương tự :
\(a+b+c=0\)
\(\Rightarrow a+c=-b\)
\(\Rightarrow\left(a+c\right)^2=\left(-b\right)^2\)
\(\Rightarrow a^2+2ac+c^2=b^2\)
\(\Rightarrow a^2+c^2-b^2=-2ac\left(2\right)\)
\(a+b+c=0\)
\(\Rightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)
\(\Rightarrow b^2+c^2-a^2=-2bc\left(3\right)\)
Từ (1)(2)(3)
\(\Rightarrow A=\dfrac{-ab}{2ab}+\dfrac{-bc}{2bc}+\dfrac{-ac}{2ac}\)
\(=\dfrac{-abc-abc-abc}{2abc}=\dfrac{-3abc}{2abc}=-\dfrac{3}{2}\)