giải phương trình nghiệm nguyên
\(2x^2+5y^2-4xy-8y-4x+14=0\)
tìm nghiệm nguyên của phương trình : x^2+5y^2-4xy+4x-8y-12=0
\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)
\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)
Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương
nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra
Giải phương trình nghiệm nguyên: \(x^2-4xy+5y^2-16=0\)
\(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Ta xét các TH:
TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)
tìm nghiệm nguyên của phương trình x2+5y2-4xy+4x-4y+3=0
giải phương trình nghiệm nguyên\(x^2-4xy+5y^2-16=0\)
Ta có : \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)
Mà \(\left(x-2y\right)^2\ge0\forall x:y\)
\(\left(y-4\right)^2\ge0\forall y\)
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(8;4\right)\)
Tìm nghiệm nguyên của pt \(x^2+5y^2-4xy+4x-8y-12=0\)
*Làm bằng cách sử dụng \(\Delta\) hoặc Δ' giúp e với ạ
PT <=> \(x^2-4x\left(y-1\right)+5y^2-8y-12=0\)
Xét \(\Delta'=\left[-2\left(y-1\right)\right]^2-1.\left(5y^2-8y-12\right)\)
= \(4\left(y^2-2y+1\right)-5y^2+8y+12\)
= \(-y^2+16\)
Để PT có nghiệm <=> \(\Delta'\ge0< =>-y^2+16\ge0\)
<=> \(y^2\le16\) <=> \(-4\le y\le4\)
Mà y nguyên
<=> \(y\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)
Đến đây bn thay y vào PT để tìm x nhé
Tìm nghiệm nguyên của phương trình: \(x^2+5y^2-4xy+4x-8y-12=0\)
Ta có:
\(x^2+5y^2-4xy+4x-8y-12=0\)
\(\Leftrightarrow x^2-4xy+4x+4y^2-8y+4+y^2-16=0\)
\(\Leftrightarrow\left[x^2-\left(4xy-4x\right)+\left(4y^2-8y+4\right)\right]+y^2=16\)
\(\Leftrightarrow\left[x^2-4x\left(y-1\right)+4\left(y-1\right)^2\right]+y^2=16\)
\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)
Do \(x,y\in Z\) => \(\left(x-2y+2\right)^2\) và \(y^2\) là 2 số chính phương.
Mà do tổng 2 số chính phương này là 16 => Một trong hai số chính phương là 16 và số còn lại là 0.
Ta có bảng sau:
Vậy các nghiệm nguyên của phương trình là:
\(\left(x;y\right)=\left(6;4\right);\left(-10;-4\right);\left(2;0\right);\left(-6;0\right)\)
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Giải phương trình nghiệm nguyên:
\(4x^2-8y^3+2z^2+4x-4=0\)
giải phương trình sau : 4x^2+5y^2-4xy+12x-10y+10=0