Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần thị hương
Xem chi tiết
Đỗ Quang Thắng
2 tháng 12 2018 lúc 8:24

sorry tôi mới học lớp 6

Nguyễn Quốc Viễn
Xem chi tiết
Zoro Roronoa
10 tháng 10 2015 lúc 10:01

2/ Tìm nghiệm nguyên dương của phương trình.

a. 13x+3y=50

Nhận thấy 13x≤13.3=39<50 nên x≤3.

+ x=3 thì không tìm được y thoả mãn.
+ x=2 thì y=8.
+ x=1 thì không tìm được y thoả mãn.
+ x=0 thì không tìm được y thoả mãn.

Vậy (x,y)=(2,8).

Huyên Lê Thị Mỹ
Xem chi tiết
Akai Haruma
21 tháng 8 2021 lúc 23:32

Bạn lưu ý chỉ đăng bài MỘT LẦN thôi chứ không đăng lặp lại gây loãng trang web.

Huyên Lê Thị Mỹ
Xem chi tiết
Akai Haruma
21 tháng 8 2021 lúc 23:17

Lời giải:

a. Ta thấy:

$18x-30y=3(6x-10y)$ chia hết cho $3$ với mọi $x,y$ nguyên, mà $59$ không chia hết cho $3$

Do đó pt $18x-30y=59$ vô nghiệm.

b. $22x-5y=77$

$5y=22x-77=11(2x-7)\vdots 11$

$\Rightarrow y\vdots 11$. Đặt $y=11k$ với $k$ nguyên 

$22x-55k=77$

$2x-5k=7$

$2x=5k+7\vdots 2$

$\Rightarrow k$ lẻ. Đặt $k=2t+1$ với $t$ nguyên

$2x=5(2t+1)+7=10t+12$

$x=5t+6$

Vậy $(x,y)=(5t+6, 22t+11)$ với $t$ nguyên 

 

 

Akai Haruma
21 tháng 8 2021 lúc 23:28

c.

$12x+19y=94$

$19y=94-12x\vdots 2\Rightarrow y\vdots 2$

Đặt $y=2k$ với $k$ nguyên. Khi đó:

$12x+38k=94$

$6x+19k=47$

$6k=47-19k=19(2-k)+9$

$\Rightarrow 6k-9\vdots 19$

$\Leftrightarrow 2k-3\vdots 19$

$\Leftrightarrow 2k-22\vdots 19$

$\Leftrightarrow k-11\vdots 19$

$\Rightarrow k=19t+11$ với $t$ nguyên

 \(x=\frac{47-19k}{6}=\frac{47-19(19t+11)}{6}=\frac{-162-361t}{6}=-27-\frac{361t}{6}\)

Để $x$ nguyên thì $t\vdots 6$. Khi đó đặt $t=6m$ với  $m$ nguyên 

Khi đó:

$y=2k=2(19t+11)=2(114m+11)=228m+22$

$x=-27-361m$ với $m$ nguyên bất kỳ.

Lê Quốc Vương
Xem chi tiết
Đinh Quang Minh
27 tháng 11 2016 lúc 21:07

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

Đinh Quang Minh
27 tháng 11 2016 lúc 21:27

cái thằng lợn này , k bấm đúng à ((:

trịnh mai chung
28 tháng 11 2016 lúc 20:26

mi cop tên mạng à

ngo vinh phuong
Xem chi tiết
Bùi Thị Hoài
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 11 2016 lúc 17:50

Nếu \(x\ge3,y\ge3,z\ge3\)thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1< 2\)

Do vậy trong ba số x,y,z tồn tại ít nhất một số nhỏ hơn 3

Gọi \(x\le y\) , \(x\le z\) thì x < 3 => x = 1 hoặc x = 2

Nếu x = 1 thì y = 2 và z = 2

Nếu x = 2 thì y = 2 và z = 2 không thỏa

Vậy (x,y,z) = (1;2;2) và các hoán vị 

Ichigo Sứ giả thần chết
Xem chi tiết
Nguyễn Thiều Công Thành
17 tháng 8 2017 lúc 22:14

dễ thôi :)))

\(\Leftrightarrow x+y+2\sqrt{xy}=1980\)

vì x;y là các số nguyên dương nên x+y là số nguyên dương

\(\Rightarrow2\sqrt{xy}\in Z^+\Rightarrow\orbr{\begin{cases}x=0;y=1980\\x=1980;y=0\end{cases}}\)

Minh Hiếu
Xem chi tiết
Đỗ Thanh Hải
4 tháng 1 2022 lúc 20:12

Tham khảo nha e

undefinedundefined

❤X༙L༙R༙8❤
4 tháng 1 2022 lúc 20:15

đăng câu hỏi kiểu j mà đặng đc lên như thế này đấy

 

Nguyễn Hoàng Minh
4 tháng 1 2022 lúc 20:24

1.

Đặt \(\sqrt[3]{2+\sqrt{b}}=x;\sqrt[3]{2-\sqrt{b}}=y\)

Do \(x>0\Rightarrow x^2+y^2-xy=\dfrac{3}{4}x^2+\left(\dfrac{1}{2}x-y\right)^2>0\)

\(PT\Leftrightarrow\dfrac{x^3+y^3}{a}+xy=x^2+y^2\Leftrightarrow\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{a}=x^2-xy+y^2\\ \Leftrightarrow\left(x^2-xy+y^2\right)\left(\dfrac{x+y}{a}-1\right)=0\\ \Leftrightarrow\dfrac{x+y}{a}=1\\ \Leftrightarrow\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}=a\left(1\right)\\ \Leftrightarrow\left(\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}\right)^3=a^3\\ \Leftrightarrow4+3a\sqrt[3]{4-b}=a^3\left(2\right)\\ \Rightarrow4-b=\left(\dfrac{a^3-4}{3a}\right)^3\)

Mặt khác \(b\in \mathbb{Z^+}\)

\(\Rightarrow\left(a^3-4\right)⋮3a\Rightarrow\left(a^3-4\right)⋮a\\ \Rightarrow4⋮a\Rightarrow a\in\left\{1;2;4\right\}\)

Với \(a=1\Rightarrow4-b=1\Rightarrow b=5\)

Với \(a=2;a=4\Rightarrow b\notin \mathbb{Z}\)

Vậy \(\left(a;b\right)=\left(1;5\right)\)