Tim STN n để
a)n+2 chia hết cho n-1
b)2n+7 chia hết cho n + 1
c) 2n+1 chia hết cho 6 - n
Tim STN n de
a) n+6 chia hết cho n
b) 3n+4 chia het cho n-1
c) 2n+1 chia het cho 16-3n
d) 3-2n chia hết cho n+1
e) n^ 2 + 2n + 6 chia hết cho n+4
e) n2 + 2n + 6 chia hết cho n + 4
n2 + 4n - 2n + 6 chia hết cho n + 4
n.(n + 4) - 2n + 6 chia hết cho n + 4
2n + 6 chia hết cho n + 4
2n + 8 - 2 chia hết cho n + 4
2.(n + 4) - 2 chia hết cho n + 4
=> - 2 chia hết cho n + 4
=> n + 4 thuộc Ư(-2) = {1 ; -1 ; 2 ; -2}
Xét 4 trường hợp ,ta có :
n + 4 = 1 => n = -3
n + 4 = -1 => n = -5
n + 4 = 2 => n = -2
n + 4 = -2 => n = -6
Tìm stn n sao cho
a) n + 3 chia hết cho n - 2
b)2n + 5 chia hết cho n + 1
c)2n + 1 chia hết cho 6 - n
d)4n + 3 chia hết cho 2n + 6
a) n+3 chia hết cho n-2
=>n-2+5 chia hết cho n-2
=> 5 chia hết cho n-2
U(5)=1;5
=>n=3;7
Ta có: n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết n - 2
=> 5 chia hết n - 2
=> n - 2 thuộc Ư(5) = {-1;1;-5;5}
=> n = {1;3;-3;7}
b)\(\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{3}{n+1}=2+\frac{3}{n+1}\in Z\)
=>3 chia hết n+1
=>n+1 thuộc Ư(3)={1;3} (vì n thuộc N)
=>n thuộc {0;2}
c)\(\frac{4n+3}{2n+6}=\frac{2\left(2n+6\right)-9}{2n+6}=\frac{2\left(2n+6\right)}{2n+6}-\frac{9}{2n+6}=2-\frac{9}{2n+6}\in Z\)
=>9 chia hết 2n+6
=>2n+6 thuộc Ư(9)={1;3;9} (vì n thuộc N)
=>n thuộc rỗng
Tìm n E N để
a) 2n + 1 chia hết co 6 - n
b) 2n + 2 chia hết cho 2n - 1
c) 4n - 5 chia hết cho 2n - 1
d) n\(^2\)+ 2n + 7 chia hết cho n + 2
e) n^2 + 1 chia hết cho n - 1
f) 3n + 1 chia hết cho 11 - 2n
h) 3n - 6 chia hết cho 2n - 1
Tìm STN n sao cho:
a) (4n - 7) chia hết cho (n - 1)
b) (5n - 8) chia hết cho (4 - n)
c) (10 - 2n) chia hết cho (n - 2)
d) (n^2 + 3n + 6) chia hết cho (n + 3)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
Bài 1 : Tìm n thuộc N để
a, n + 2 chia hết cho n - 1
b , 2n + 7 chia hết cho n + 1
c, 2n + 1 chia hết cho 6 - n
d , 3n chia hết cho 5 - 2n
e , 4n + 3 chia hết cho 2n + 6
tìm stn n để
a) 4n-7 chia hết cho n-1
b) 10-2n chia hết cho n-2
a, 4n - 7 ⋮ n - 1
=> 4n - 4 - 3 ⋮ n - 1
=> 4(n - 1) - 3 ⋮ n - 1
=> -3 ⋮ n - 1
=> n - 1 thuộc Ư(-3)
=> n - 1 thuộc {-1; 1; -3; 3}
=> n thuộc {0; 2; -2; 4}
giúp mình giải với
1, tìm n thuộc N để
a)2n+3chia hết cho n-2
b)3n+1 chia hết cho 11 -2n
c)n+2 chia hết cho n-1
d)2n+7 chia hết cho n+1
e)2n+1 chia hết cho 6-n
f)4n+3 chia hết cho 2n -6
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
tìm n thuộc N :
a) n+2 chia hết cho n-1
b) 2n+7 chia hết cho n+1
c) 2n+1 chia hết cho 6-n
d) 3n chia hết cho 5- 2n
e) 4n + 3 chia hết cho 2n+6
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)