Cho \(0< a\le\frac{1}{2}.\) Tìm GTNN của \(S=2a+\frac{1}{a^2}\)
Bài 1: Cho a,b,c >0 và ab+bc+ca=3abc.
Chứng minh: \(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{3}{2}\)
Bài 2: Cho a,b > 0; \(2a+b\ge7.\)
Tìm GTNN của: S=\(a^2-a+3b+\frac{9}{a}+\frac{1}{b}+9\)
Help me!!!
Cho a,b,c>0; \(a+b+c\le\frac{3}{2}\)Tìm GTNN của biểu thức \(S=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
S = a+b+c + (1/a + 1/b + 1/c)
>= (a+b+c) + 9/a+b+c
= [ (a+b+c) + 9/4.(a+b+c) ] + 27/4.(a+b+c)
>= \(2\sqrt{\left(a+b+c\right).\frac{9}{4.\left(a+b+c\right)}}\) + 27/(4.3/2)
= 3 + 9/2
= 15/2
Dấu "=" xảy ra <=> a=b=c=1/2
Vậy ......
Tk mk nha
bài này còn có thể theo phương pháp chọn điểm rơi trong bài toán cực trị, bạn thử tìm hiểu nhé!!!!
1/Cho a,b,c≥0 và \(a^2+b^2+c^2\le abc\). Tìm GTLN của
M=\(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ba}\)
2/Cho a,b,c>0 thỏa mãn 13a+5b+12c=9. Tìm GTLN của
N=\(\frac{ab}{2a+b}+\frac{3bc}{2b+c}+\frac{6ca}{2c+a}\)
3/Cho a,b,c>0 thỏa mãn a+b+c=3. Tìm GTNN của
P=\(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\)
4/Cho các số thực a,b,c thỏa mãn ab+7bc+ca=188.
Tìm GTNN của P=\(5a^2+11b^2+5c^2\)
Ai giải được câu nào giải hộ mình vs ạ!!!
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
í lộn, bài 4:v Bài 3 thấy quen quen, đợi chút em lục lại@Hoàng Quốc Tuấn
cho a, b, c>0 và \(a+b+c\le\frac{3}{2}\)
tìm GTNN của S=\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}+}\sqrt{c^2+\frac{1}{a^2}}\)
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\frac{2.9}{4}+\frac{1215.4}{16.9}}=\frac{3\sqrt{17}}{2}\)
√a2+1b2 +√b2+1c2 +√c2+1a2
≥√(a+b+c)2+(1a +1b +1c )2
≥√(a+b+c)2+81(a+b+c)2
≥√(a+b+c)2+8116(a+b+c)2 +121516(a+b+c)2
≥√2.94 +1215.416.9 =3√172
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}.\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{16\times\left(a+b+c\right)^2}+\frac{1215}{16\times\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\frac{2\times9}{4}+\frac{1215\times4}{16\times9}}=\frac{3\sqrt{17}}{2}\)
cho a,b,c>0 và a+b+c\(\le\frac{3}{2}\).Tìm GTNN của S=\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
\(S\ge3\sqrt[6]{\frac{a^2b^2+1}{ab}.\frac{b^2c^2+1}{bc}.\frac{c^2a^2+1}{ca}}\)
Sở trường của Thắng. ( làm rùm) mình tịt rồi.
cho a, b, c>0 và \(a+b+c\le\frac{3}{2}\)
tìm GTNN của S=\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}+}\sqrt{c^2+\frac{1}{a^2}}\)
Cho 2 số thực dương a,b khác 0 thỏa mãn \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\)
Tìm GTNN và GTLN của S= ab+2019
Cho hai số a, b thoả mãn khác 0. 2a2 + \(\frac{b^2}{4}+\frac{1}{a^2}=4\)
Tìm GTNN của biểu thức: S =ab + 2009
2a² + b²/4 + 1/a² = 4
⇔ 8a⁴ + a²b² + 4 = 16a²
⇔ a²b² = -8a⁴ + 16a² - 4
⇔ a²b² = -8(a⁴ - 2a² + 1) + 4
⇔ a²b² = -8(a² - 1)² + 4 ≤ 4
⇔ │ab│ ≤ 2
⇔ -2 ≤ ab ≤ 2
--> A = ab + 2011 ≥ 2009
Dấu " = " xảy ra ⇔
{ a² - 1 = 0 . . . --> { a = 1 . . . . . { a = -1
{ ab = -2 . . . . . . . { b = -2 hoặc .{ b = 2
Cho \(0< a\le\frac{1}{2}\). Tìm giá trị nhỏ nhất của \(S=2a+\frac{1}{a^2}\)
Ta có:\(S=2a+\frac{1}{a^2}\)
\(A=8a+8a+\frac{1}{a^2}-14a\)
\(A\ge3\sqrt[3]{8a\cdot8a\cdot\frac{1}{a^2}}-14\cdot\frac{1}{2}\)
\(A\ge14-7=5\)
"="<=>a=1/2