Ta có:\(S=2a+\frac{1}{a^2}\)
\(A=8a+8a+\frac{1}{a^2}-14a\)
\(A\ge3\sqrt[3]{8a\cdot8a\cdot\frac{1}{a^2}}-14\cdot\frac{1}{2}\)
\(A\ge14-7=5\)
"="<=>a=1/2
Ta có:\(S=2a+\frac{1}{a^2}\)
\(A=8a+8a+\frac{1}{a^2}-14a\)
\(A\ge3\sqrt[3]{8a\cdot8a\cdot\frac{1}{a^2}}-14\cdot\frac{1}{2}\)
\(A\ge14-7=5\)
"="<=>a=1/2
Cho \(0< a\le\frac{1}{2}\) tìm giá trị nhỏ nhất của biểu thức S=\(2a+\frac{1}{a^2}\)
a) Rút gọn biểu thức:\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{\sqrt{5}-5}{1-\sqrt{5}}\right):\frac{1}{\sqrt{2}-\sqrt{5}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B=\(x^2-x\sqrt{3}+1\)
Cho biểu thức:
\(P=\frac{x-13}{\sqrt{x-9}-2}\:\) (x>9 hoặc x=9; x#1)
a) Rút gọn biểu thức
b) Tìm giá trị nhỏ nhất của P
Cho x,y là các số dương thỏa mãn x + y \(\le\)3. Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{2}{3xy}+\sqrt[]{\dfrac{3}{y+1}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{2\sqrt{x}}{\sqrt{x}-2}-\frac{3x+4}{x-4}\) với \(x\ge 0\);x#4
a,Rút gọn A
b,Tìm giá trị của x để A=\(\frac{1}{2}\)
1.Tính giá trị của biểu thức: A=\(\frac{\sqrt{x}+1}{\:\sqrt{x}-1}\) khi x=9
2.Cho \(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot \frac{\sqrt{x}+1}{\sqrt{x}-1}\) với x>0,x#1
a, Rút gọn P
b, Tính các giá trị của x để 2P=\(2\sqrt{x}+5\)
c,Với A,P là hai biểu thức ở trên,tìm x để \(\frac{A}{P}>2\)
Cho \(a,b>0\) và \(a+b\le1.\) Tìm giá trị nhỏ nhất của \(S=ab+\frac{1}{ab}\)
Cho x,y > 0 và x+y=1. Tính giá trị nhỏ nhất của biểu thức \(A=x^2+y^2+xy\)
Cho biểu thức: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) Với x>0;x#1;x#4
a,Rút gọn P
b,Với giá trị nào của x thì P=\(\frac{1}{4}\)
c,Tính giá trị của P tại x=\(4+2\sqrt{3}\)