Cho A=3+32+33+........+399
Không tính tổng A, hãy chứng tỏ rằngA chia hết cho 13
Chứng tỏ rằng tổng A = 1+3+32+33+...+311 chia hết cho 13
Chứng tỏ rằng tổng sau chia hết cho 13, A 3 32 33 34 35 36 37 38 39
Chứng minh rằng
a) G=88 + 220 chia hết cho 17
b) H=2+2+22+23+...+260 chia hết cho 3; 7; 15
c) I=E=1+3+32+33+...+31991 chia hết cho 13; 14
a: \(G=8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)⋮15\)
c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
\(E=1+3+3^2+3^3+...+3^{1991}\)
\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)
\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)
Cho A=3+32+33+...+399 chứng tỏ rằng A chia hết cho 13
\(A=3+3^2+3^3+...+3^{99}\\ \Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\\ \Rightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\\ \Rightarrow A=\left(1+3+3^2\right)\left(3+3^4+...+3^{97}\right)\\ \Rightarrow A=13\left(3+3^4+...+3^{97}\right)⋮13\)
\(A=3+3^2+3^3+...+3^{99}\\ 3A-A=3^{99}-1\\ A=\dfrac{3^{99}-1}{2}\)
Chứng tỏ A = 1 + 3 + 32 + 33 + ... + 3101 chia hết cho 13.
\(A=1+3+3^2+...+3^{101}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\)
Cho A=1+3+32+33+...+398+399. Hãy chứng tỏ A chia hết cho 4
`#3107.101107`
\(A = 1 + 3 + 3^2 + 3^3 + ... + 3^{98} + 3^{99}\)
\(A = (1 + 3) + (3^2 + 3^3) + ... + (3^{98} + 3^{99})\)
\(A = (1 + 3) + 3^2(1 + 3) + ... + 3^{98}(1 + 3)\)
\(A = (1 + 3)(1 + 3^2 + ... + 3^{98})\)
\(A = 4(1 + 3^2 + ... + 3^{98})\)
Vì \(4(1 + 3^2 + ... + 3^{98}) \) \(\vdots\) \(4\)
`\Rightarrow A \vdots 4`
Vậy, `A \vdots 4` (đpcm).
A = 1 + 3 + 32 + 33 + ... + 398 + 399
A = (1 + 3) + (32 + 33) + ... + (398 + 399)
A = 1. (1 + 3) + 32. (1 + 3) + ... + 398. (1 + 3)
A = 1.4 + 32.4 + ... + 398.4
A = 4. (1 + 32 + ... + 398)
⇒ A ⋮ 4
Cho A = 1 + 3 + 32 + 33 +…+ 3101. Chứng tỏ rằng A chia hết cho 13
Tính nhanh: 126.34 + 102.47 – 178.51 b) Chứng tỏ rằng tổng A = 3 + 32 + 33 + 34 + ... + 319 + 320 chia hết cho 4
Cho tổng A=4+32+33+... .. . . . . . ..+ 3223. Chứng tỏ A CHIA HẾT cho 41