\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=3.\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{97}.\left(1+3+3^2\right)\)
\(A=3.13+3^4.13+...+3^{97}.13\)
\(A=13.\left(3+3^4+..+3^{97}\right)⋮13\)
Vậy...
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=3\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\)
\(A=3\cdot13+...+3^{97}\cdot13\)
\(A=13\cdot\left(3+...+3^{97}\right)⋮13\left(đpcm\right)\)
\(A=3+3^2+3^3+......+3^{99}\)
\(\Rightarrow A=\left(3+3^2+3^3\right)+........+\left(3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=3\left(1+3+3^2\right)+......+3^{97}\left(1+3+3^2\right)\)
\(\Rightarrow A=3.13+.......+3^{97}.13\)
\(\Rightarrow A=13\left(3+....+3^{97}\right)⋮13\left(đpcm\right)\)
ta có: A = 3 + 32 + 33 + ...+ 399 ( có 99 số hạng)
A = (3+32 + 33) + ...+ (397 + 398 + 399) ( có 33 nhóm số hạng)
A = 3.(1+3+32) + ...+ 397.(1+3+32)
A = 3.13 + ....+ 397.13
A = 13.(3+...+397) chia hết cho 13
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=3\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\)
\(A=3.13+...+3^{97}.13\)
\(A=13.\left(3+...+3^{97}\right)\)
\(\Rightarrow A⋮3\left(đpcm\right)\)