Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Văn Thành
Xem chi tiết
nguyễn thị nga
Xem chi tiết
Edogawa Conan
14 tháng 7 2019 lúc 14:54

A = x2 - 8x + 1 = (x2 - 8x + 16) - 15 = (x - 4)2 - 15

Ta có: (x - 4)2 \(\ge\)\(\forall\)x

=> (x - 4)2 - 15 \(\ge\)-15 \(\forall\) x 

Dấu "=" xảy ra khi: x - 4 = 0 <=> x = 4

vậy Min của A = -15 tại x = 4

B = 9x2 - 12x - 2 = 9(x2 - 4/3x + 4/9) - 6 = 9(x - 2/3)2 - 6

Ta có: (x - 2/3)2 \(\ge\)\(\forall\)x ---> 9(x - 2/3)2 \(\ge\)\(\forall\)x

=> 9(x - 2/3)2 - 6 \(\ge\)-6 \(\forall\)x

Dấu "=" xảy ra khi: x - 2/3 = 0 <=> x = 2/3

vậy Min của B = -6 tại x = 2/3

Vũ Đức Minh
Xem chi tiết
Vũ Đức Minh
3 tháng 5 2023 lúc 12:48

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!

Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 14:56

a:6x-5-9x^2

=-(9x^2-6x+5)

=-(9x^2-6x+1+4)

=-(3x-1)^2-4<=-4

=>A>=2/-4=-1/2

Dấu = xảy ra khi x=1/3

b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)

2x^2-3x+2=2(x^2-3/2x+1)

=2(x^2-2*x*3/4+9/16+7/16)

=2(x-3/4)^2+7/8>=7/8

=>-1/2x^2-3x+2<=-1:7/8=-8/7

=>B<=-8/7+2=6/7

Dâu = xảy ra khi x=3/4

Lê Phương Mai
Xem chi tiết
Trên con đường thành côn...
19 tháng 7 2021 lúc 18:31

undefined

Trên con đường thành côn...
19 tháng 7 2021 lúc 18:37

undefinedundefined

Tư Linh
19 tháng 7 2021 lúc 18:40

bạn xem lại đề bài 1 là GTNN hay GTLN nha

Kook Jung
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 20:34

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1

hoàng
Xem chi tiết
Vương Đình Tiến
20 tháng 7 2017 lúc 8:41

A=x2-4x+7

= x2-4x+4+3

= (x-2)2+3

Vì (x+2)2>0

Nên (x-2)2+3>/3

Vậy MAX của A=3 khi x-2=0 => x=2

trần thị hoàng yến
Xem chi tiết
nguyenvankhoi196a
5 tháng 11 2017 lúc 17:11

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Đường Quỳnh Giang
30 tháng 9 2018 lúc 5:18

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

Nguyễn Anh Thư
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 8:32

\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)

\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)

\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)

\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)

\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)

Khách vãng lai đã xóa
Linh Khánh
Xem chi tiết
Yukru
23 tháng 8 2018 lúc 19:33

Bài 1:

\(A=-x^2-2x+9\)

\(A=-\left(x^2+2x-9\right)\)

\(A=-\left(x^2+2x+1-10\right)\)

\(A=-\left(x+1\right)^2+10\)

\(-\left(x+1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x+1\right)^2+10\le10\)

\(\Rightarrow Amax=10\Leftrightarrow x=-1\)

\(B=-9x^2+6x+25\)

\(B=-\left(9x^2-6x-25\right)\)

\(B=-\left[\left(3x\right)^2-2.3x+1-26\right]\)

\(B=-\left(3x-1\right)^2+26\)

\(-\left(3x-1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(3x-1\right)^2+26\le26\)

\(\Rightarrow Bmax=26\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)

\(C=-x^2+x+1\)

\(C=-\left(x^2-x-1\right)\)

\(C=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}-1\right)\)

\(C=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)

\(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)

\(\Rightarrow Cmax=\dfrac{5}{4}\Leftrightarrow x=\dfrac{1}{2}\)

\(D=-2x^2+3x+1\)

\(D=-2\left(x^2-\dfrac{3}{2}x-\dfrac{1}{2}\right)\)

\(D=-2\left(x^2-2.x\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{1}{2}\right)\)

\(D=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\)

\(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x

\(\Rightarrow-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\le\dfrac{17}{8}\)

\(\Rightarrow Dmax=\dfrac{17}{8}\Leftrightarrow x=\dfrac{3}{4}\)

\(E=-25x^2-10x+7\)

\(E=-\left(25x^2+10x-7\right)\)

\(E=-\left[\left(5x\right)^2+2.5x+1-8\right]\)

\(E=-\left(5x+1\right)^2+8\)

\(-\left(5x+1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(5x+1\right)^2+8\le8\)

\(\Rightarrow Emax=8\Leftrightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)

Bài 2:

\(A=9x^2+6x+4\)

\(A=\left(3x\right)^2+2.3x+1+3\)

\(A=\left(3x+1\right)^2+3\)

\(\left(3x+1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(3x+1\right)^2+3\ge3\)

\(\Rightarrow Amin=3\Leftrightarrow x=-\dfrac{1}{3}\)

\(B=4x^2+4x+12\)

\(B=\left(2x\right)^2+2.2x+1+11\)

\(B=\left(2x+1\right)^2+11\)

\(\left(2x+1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(2x+1\right)^2+11\ge11\)

\(\Rightarrow Bmin=11\Leftrightarrow x=-\dfrac{1}{2}\)

\(C=x^2+x+3\)

\(C=x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+3\)

\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

\(\Rightarrow Cmin=\dfrac{11}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

\(D=2x^2+3x+1\)

\(D=2\left(x^2+\dfrac{3}{2}x+\dfrac{1}{2}\right)\)

\(D=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}+\dfrac{1}{2}\right)\)

\(D=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)

\(2\left(x+\dfrac{3}{4}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)

\(\Rightarrow Dmin=-\dfrac{1}{8}\Leftrightarrow x=-\dfrac{3}{4}\)

\(E=64x^2+16x+3\)

\(E=\left(8x\right)^2+2.8x+1+2\)

\(E=\left(8x+1\right)^2+2\)

\(\left(8x+1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(8x+1\right)^2+2\ge2\)

\(\Rightarrow Emin=2\Leftrightarrow x=-\dfrac{1}{8}\)