Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lai linh
Xem chi tiết
lai linh
18 tháng 9 2017 lúc 20:55

phần e là cả hai dòng nhé các bạn

Thanh Trà
18 tháng 9 2017 lúc 21:02

bn viết rõ đề đi bn

Vd:x2 là 2.x hay x\(^2\)

Có nhiều chỗ vậy lắm bn ạ,bn viết lại đề đi rồi tụi mk giúp cho.

qwerty
18 tháng 9 2017 lúc 21:20

a) \(3x-3y+x^2-y^2\)

\(=3\left(x-y\right)+\left(x+y\right)\left(x-y\right)\)

\(=\left(3+x+y\right)\left(x-y\right)\)

b) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left[\left(2xy+1\right)-\left(2x+y\right)\right]\left[\left(2xy+1\right)+\left(2x+y\right)\right]\)

\(=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)

\(=\left(y+1\right)\left(2x+1\right)\left(y-1\right)\left(2x-1\right)\)

c) \(\left(x^2+y^2-5\right)^2-4\left(x^2y^2+4xy+4\right)\)

\(=\left(x^2-y^2-2y-1\right)\left(x^2-2xy+y^2-9\right)\)

\(=\left[x^2-\left(y^2+2y+1\right)\right]\left(x^2-2xy+y^2-9\right)\)

\(=\left[x^2-\left(y+1\right)^2\right]\left[\left(x-y\right)^2-3^2\right]\)

\(=\left[x^2-\left(-y-1\right)^2\right]\left(x-y+3\right)\left(x-y-3\right)\)

\(=\left(x+y+1\right)\left(x-y-1\right)\left(x-y+3\right)\left(x-y-3\right)\)

d) \(\left(x^2+y^2-z^2\right)^2-4x^2y^2\)

\(=\left(x^2+y^2-z^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+y^2-z^2-2xy\right)\left(x^2+y^2-z^2+2xy\right)\)

\(=\left[\left(x-y\right)^2-z^2\right]\left[\left(x+y\right)^2-z^2\right]\)

\(=\left(x-y-z\right)\left(x-y+z\right)\left(x+y-z\right)\left(x+y+z\right)\)

e)

- \(9x^2+90=9\left(x+10\right)\)

- \(x+225-\left(x-7\right)^2\)

\(=x+225-\left(x^2-14x+49\right)\)

\(=x+225-x^2+14x-49\)

\(=-x^2+15x+176\)

\(=-\left(x^2-15x-176\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 11 2017 lúc 12:26

4x2y2 – (x2 + y2)2

= (2xy)2 – (x2 + y2)2

= (2xy + x2 + y2)(2xy - x2 - y2)

= - (x2 + 2xy + y2)(x2 - 2xy + y2)

= -(x + y)2 .(x - y)2

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 7:09

\(1,Sửa:A=4x^4+4x^2y+y^2+2=\left(2x^2+y\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow2x^2+y=0\Leftrightarrow x^2=-\dfrac{y}{2}\\ 2,B=\left(x+y\right)^2+\left(y+1\right)^2+12\ge12\\ B_{min}=12\Leftrightarrow\left\{{}\begin{matrix}x=-y=1\\y=-1\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2017 lúc 3:19

Chọn đáp án A

Cíu iem
Xem chi tiết
Rin Huỳnh
21 tháng 9 2021 lúc 11:33

a) 3(x-y) - (x-y)^2

 =(x-y)(3-x+y)

Rin Huỳnh
21 tháng 9 2021 lúc 11:34

b) =(x+y)^2 - (2xy)^2

= (x+y-2xy)(x+y+2xy)

Nguyễn Hoàng Minh
21 tháng 9 2021 lúc 11:35

\(a,=3\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(3-x+y\right)\\ b,=\left(x+y\right)^2-4x^2y^2=\left(x-2xy+y\right)\left(x+2xy+y\right)\\ c,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\\ d,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)

nguyenvanhoang
Xem chi tiết
Đường Quỳnh Giang
30 tháng 9 2018 lúc 4:57

\(\left(x-y\right)^2+4\left(x-y\right)+4\)

\(=\left(x-y\right)^2+2.\left(x-y\right).2+2^2\)

\(=\left(x-y+2\right)^2\)

hk tốt

^^

Nguyễn Minh Huyền
Xem chi tiết
Lê Ng Hải Anh
25 tháng 8 2018 lúc 16:43

\(a,4x^2-25-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)

\(=-2\left(2x-5\right)\)

\(b,x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=\left(x+3\right)\left(x^2-2x\right)\)

\(=x\left(x+3\right)\left(x-2\right)\)

=.= hok tốt!!

ThaiHoaGaming VietNam
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 8 2021 lúc 18:33

\(a,x^3y^2-xy^2=xy^2\left(x^2-1\right)=xy^2\left(x-1\right)\left(x+1\right)\\ b,2x^3y^2+4x^2y^2+2xy^2=2xy^2\left(x^2+2x+1\right)=2xy^2\left(x+1\right)^2\\ c,3x^3y-12x^2y+12xy=2xy\left(x^2-4x+4\right)=2xy\left(x-2\right)^2\\ d,6x^3y+12x^2y^2+6xy^3=6xy\left(x^2+2xy+y^2\right)=6xy\left(x+y\right)^2\\ e,x^2\left(x-y\right)+y^2\left(y-x\right)=\left(x^2-y^2\right)\left(x-y\right)=\left(x-y\right)^2\left(x+y\right)\\ f,9x^2\left(x-2\right)-4y^2\left(x-2\right)=\left(9x^2-4y^2\right)\left(x-2\right)=\left(3x-2y\right)\left(3x+2y\right)\left(x-2\right)\)

Tick plz

 

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 23:46

a: \(x^3y^2-xy^2=xy^2\left(x^2-1\right)=xy^2\left(x-1\right)\left(x+1\right)\)

b: \(2x^3y^2+4x^2y^2+2xy^2=2xy^2\left(x^2+2x+1\right)=2xy^2\cdot\left(x+1\right)^2\)

c: \(3x^3y-12x^2y+12xy=3xy\left(x^2-4x+4\right)=3xy\cdot\left(x-2\right)^2\)

d: \(6x^3y+12x^2y^2+6xy^3=6xy\left(x^2+2xy+y^2\right)=6xy\cdot\left(x+y\right)^2\)

e: \(x^2\left(x-y\right)+y^2\left(y-x\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)

f: \(9x^2\left(x-2\right)-4y^2\left(x-2\right)=\left(x-2\right)\left(3x-2y\right)\left(3x+2y\right)\)

NgDQ
Xem chi tiết
gái xinh nè
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2021 lúc 22:55

1: Phân tích thành nhân tử

c) Ta có: \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)