Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Jenner
Xem chi tiết
Hung nguyen
15 tháng 8 2021 lúc 15:03

\(x^3+y^3=\left(x+y\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-x-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\left(1\right)\\x^2-xy+y^2-x-y=0\left(2\right)\end{matrix}\right.\)

(1) thì tự làm nốt
\(\left(2\right)\Leftrightarrow x^2-x\left(y+1\right)+y^2-y=0\)

Xem phương trình ẩn x. Để phương trình có nghiệm thì:
\(\Delta_x=\left(y+1\right)^2-4\left(y^2-y\right)\ge0\)

\(\Leftrightarrow0\le y\le2\)

Làm nốt

Lê Tài Bảo Châu
Xem chi tiết
T༶O༶F༶U༶U༶
15 tháng 5 2019 lúc 22:51

Hết toán lớp 8 sang toán lớp 7 :V

Lê Tài Bảo Châu
15 tháng 5 2019 lúc 22:54

Help tui đi mà please

๖ۣۜHewwy❤‿❧❤Fei❤☙
15 tháng 5 2019 lúc 22:56

=))xúc phạm mấy đứa IQ thấp:'))

Nguyễn Thị Bích Thuỳ
Xem chi tiết
phạm anh thơ
Xem chi tiết
Nguyễn Hưng Phát
31 tháng 3 2018 lúc 21:34

Ta có:\(13y^2=2014-20x^2\).Vì \(2014-20x^2\) chẵn nên \(13y^2\) chẵn \(\Rightarrow y^2\) chẵn\(\Rightarrow y⋮2\)\(\Rightarrow y^2⋮4\)\(\Rightarrow13y^2⋮4\)

Mặt khác \(20x^2⋮4\) nên \(20x^2+13y^2⋮4\) mà \(2014\) chia 4 dư 2(vô lí)

Vậy không tồn tại x,y thỏa mãn

Nguyen Hai Bang
Xem chi tiết
Đinh Thùy Linh
10 tháng 7 2016 lúc 22:36

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Leftrightarrow xy=\left(x+y\right)^2.\)

mà (x + y)2 >=0 với mọi x;y => xy >= 0. => x;y không thể trái dấu. đpcm

LÊ NGUYỄN PHƯƠNG THẢO
Xem chi tiết
Kậu...chủ...nhỏ...!!!
14 tháng 8 2021 lúc 20:33

lâu rồi ko làm xem đúng ko nhé

x=5

y=5

z=5

OH-YEAH^^
14 tháng 8 2021 lúc 20:33

x=5, y=15, z=3

nguyen the phu
14 tháng 8 2021 lúc 20:41

x=5, y=15, z=3

Park Jimin
Xem chi tiết
Lê Anh Tú
3 tháng 1 2018 lúc 17:59

Nếu tồn tại 3 số nguyên a,b,c thõa mãn

abc+a=-625

abc+b=-633

abc+c=-597

Chỉ có 2 số lẻ thì tích mới là 1 số lẻ

Vì a,b,c là số lẻ 

Nên abc cũng là số lẻ

Mà abc+a là chẵn ko thể bằng số -625 ( số lẻ)

      abc+b  ... tương tự như trên

Nên ko tồn tại số nguyên a b c  thõa mãn đk đề bài đã cho

Nguyễn Đặng Linh Nhi
3 tháng 1 2018 lúc 17:59

Giả sử tồn tại các số nguyên a; b; c thỏa mãn:

a.b.c + a = -625   ;     a.b.c + b = -633           và        a.b.c + c = -597

Xét từng điều kiện ta có:

a.b.c + a = a.(b.c + 1) = -625

a.b.c + b = b.(a.c + 1) = -633

a.b.c + c = c.(a.b + 1) = -597

Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.

Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)     

Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.

Thien
Xem chi tiết