Tồn tại hay không các số nguyên x, y thỏa mãn (x−y)^2 + 2 = 2x + 2021y.
Tồn tại hay không các số nguyên x, y thỏa mãn:
(x−y)2 + 2 = 2x + 2021y.
cho hệ pt:
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\left(1\right),mlàthamsố\)
a) giải hệ (1) với m=2( câu này k cần lm)
b) Tìm tất cả các giá trị của m để hệ (1) có nghiệm duy nhất.
c) tìm giá trị nhỏ nhất của biểu thức A= \(x^2+y^2\), trong đó (x;y) là nghiệm duy nhất của hệ (1)
cho x,y là số thực . Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Cho hệ phương trình
(m-1)x -y=3m -1
2x -y = m +5
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x2+y2 đạt giá trị nhỏ nhất
Cho số nguyên dương n thỏa mãn 5n+1 và 8n+1 là hai số chính phương. Chứng minh rằng 39n + 11 là hợp số.
Trong mặt phẳng tọa độ, xét đường thẳng (d) : y= (m+1)x-4 với m =/=1. Tìm tất cả các giá trị của m để đường thẳng d cắt trục Ox và Oy lần lượt tại M và N sao cho tam giác OMN có diện tích bằng 4 (đvdt)
cho hệ pt:
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)(1),mlàthamsố
a) giải hệ (1) với m=2( câu này k cần lm)
b) Tìm tất cả các giá trị của m để hệ (1) có nghiệm duy nhất.
c) tìm giá trị nhỏ nhất của biểu thức A= x^2+y^2, trong đó (x;y) là nghiệm duy nhất của hệ (1)
cho x,y là số thực . Tìm giá trị nhỏ nhất của biểu thức:
cho hệ pt \(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
a. tìm m để hpt có nghiệm duy nhất
b. tìm m để bt A=x2+y2 đạt GTNN, với (x,y) là nghiệm duy nhất của pt
a)\(\left\{{}\begin{matrix}2x+\left|y\right|=3\\x-y=6\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{3}x+y=\sqrt{2}\\\sqrt{3}x-\sqrt{2}y=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\sqrt{x+3}+\sqrt{y^2-4y+4}=2\\\sqrt{x+3}-3\left|2-y\right|=1\end{matrix}\right.\)