cho hệ pt:
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\left(1\right),mlàthamsố\)
a) giải hệ (1) với m=2( câu này k cần lm)
b) Tìm tất cả các giá trị của m để hệ (1) có nghiệm duy nhất.
c) tìm giá trị nhỏ nhất của biểu thức A= \(x^2+y^2\), trong đó (x;y) là nghiệm duy nhất của hệ (1)
cho x,y là số thực . Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Cho hpt \(\left\{{}\begin{matrix}m^2x+2y=m\\\left(m+1\right)x-y=1\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m x>0 và y<0
Cho hpt \(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m \(x^2+y^2=10\)
1.Cho pt 2x+3y=300.Pt có bao nhiêu nghiệm nguyên dương?
2.Cho hệ pt \(\left\{{}\begin{matrix}ax+y=3\left(1\right)\\x-2y=2\left(2\right)\end{matrix}\right.\).Gọi D1,D2 lần lượt là các đường thẳng có pt (1) và (2).Tìm a biết rằng có điểm A trên D1 và điểm B trên D2 t/m \(\left\{{}\begin{matrix}x_A=x_B\ne0\\y_A+3y_B=0\end{matrix}\right.\)
3.Cho hệ pt \(\left\{{}\begin{matrix}\left(m+1\right)x+8y=4m\\mx+\left(m+3\right)y=3m-1\end{matrix}\right.\).Tìm giá trị nguyên của m để hệ có nghiệm duy nhất (x;y) vs x,y có giá trị nguyên
1.Cho hệ pt \(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\) gọi nghiệm của hệ pt là(x;y)
a)Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào m.
b)Tìm giá trị của x t/m \(2x^2-7y=1\)
c)Tìm các giá trị của m để bt \(\dfrac{2x-3y}{x+y}\)nhận giá trị nguyên
2.Giải hệ pt:\(\left\{{}\begin{matrix}x^2+2y^2-3xy-2x+4y=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)
3.Giải hệ pt:\(\left\{{}\begin{matrix}x^2+4xy-3x-4y=2\\y^2-2xy-x=-5\end{matrix}\right.\)
Cho hpt \(\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\mx+y=m+1\end{matrix}\right.\)
Chứng minh với mọi m hpt có nghiệm duy nhất (x;y) t/m \(2x+y\le3\)
Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m \(x+y>0\)
\(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
a) Giải hpt khi m= -3
b) Tìm m để hpt có nghiệm duy nhất (x;y) thỏa dk x+ y2 = 1
Bai 2: cho hpt\(\left\{{}\begin{matrix}x-2y=4m-5\\2x+y=3m\end{matrix}\right.\)
a) giai pt khi m=3
b) Tim de pt co nghiem (x,y) thoa man \(\dfrac{2}{x}-\dfrac{1}{y}=-1\)
(mink dag can gap)