Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thân Nhật Minh
Xem chi tiết
Hoàng C5
19 tháng 1 2020 lúc 20:24

ez mà :)))

Khách vãng lai đã xóa
Nguyễn Thùy Trang
19 tháng 1 2020 lúc 20:25

bạn ơi, hình như bạn nhớ nhầm rồi đấy, ko có HĐT đó đâu, mà có HĐT thức ấy nhưng a+b+c = 0  nữa cơ

Khách vãng lai đã xóa
Hoàng C5
19 tháng 1 2020 lúc 20:33

Đặt a^2-bc=x, b^2-ac=y, c^2-ab=z

x^3+y^3+z^3>=3abc

( tự chuyển vế phân )<=> (x+y+z)(x^2+y^2+z^2-xy-yz-zx) >= 0

Ta có: (x-y)^2+(y-z)^2+(z-x)^2 >= 0   

<=> x^2+y^2+z^2-xy-yz-zx >= 0 (1)

( coi a=x, b=y, c=z )

=> a^2+b^2+c^2-ab-bc-ca >= 0

<=> (a^2-bc)+(b^2-ca)+(c^2-ab) >= 0

<=> x+y+z >= 0 (2)

Từ (1),(2) => (x+y+z)(x^2+y^2+z^2-xy-yz-zx) >= 0

=> Đpcm

Khách vãng lai đã xóa
seto kaiba
Xem chi tiết
Hoàng
Xem chi tiết
hoaan
Xem chi tiết
Không Tên
24 tháng 7 2018 lúc 22:07

a)  \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

b)  \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)

l҉o҉n҉g҉ d҉z҉
Xem chi tiết

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

Khách vãng lai đã xóa
Đặng Nguyễn Khánh Uyên
Xem chi tiết
Thảo Nguyên Xanh
6 tháng 2 2017 lúc 20:10

Biến đổi vế trài ta có

a3+b3+c3-3abc+3ab(a+b)-3ab(a+b)

=(a+b)(a2-ab+b2)-3ab(a+b+c)+3ab(a+b)+c3

=(a+b)(a+b)2+c3-3ab(a+B+c)

=......................

Bn cứ nhóm lại là = vế phải.

Mạc Thu Hà
10 tháng 3 2017 lúc 15:55

bạn thiếu dấu cộng giữa b2 và cvì vậy vế phải là (a+b+c)(a2+b2+c2 -ab-bc-ac)

Ta có : a3+b3+c3 -3abc = (a+b)3 -3ab(a+b)+c3 -3abc = (a+b)3 +c3  -3ab(a+b+c)

                                   =(a+b+c)3 -3(a+b)c(a+b+c)-3ab(a+b+c)

                                   =(a+b+c)((a+b+c)2-3(ac+bc)-3ab)

                                   =(a+b+c)(a2+b2+c2 +2ab +2ac +2bc -3ab -3bc -3ac )

                                   =(a+b+c)(a2+b+c2-ab-bc-ac)=vp (đpcm)

Songoku Sky Fc11
5 tháng 8 2017 lúc 6:07
 

Có: a3+b3+c33abc

=a3+3a2b+3ab2+b3+c33a2b3ab23abc

=(a+b)3+c33ab(a+b+c)

=(a+b+c)(a2+2ab+b2(a+b)c+c2)3ab(a+b+c)

=(a+b+c)(a2+b2+c2+2abacbc3ab)

=(a+b+c)(a2+b2+c2abacbc)(đpcm)

   
Khánh Ngọc
Xem chi tiết
Edogawa Conan
29 tháng 7 2020 lúc 22:26

VT = a3 + b3 + c3 - 3abc = (a + b)(a2 - ab + b2) + c3 - 3abc

= (a + b)(a2 + 2ab + b2 - 3ab) + c3 - 3abc

= (a + b)3 - 3ab(a + b) + c3 - 3abc

= (a + b+ c)[(a + b)2 - c(a + b) + c2] - 3ab(a + b+  c)

= (a + b + c))(a2 + 2ab + b2 - ac - bc + c2 - 3abc)

= (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = VP

=> ĐPCM

Khách vãng lai đã xóa
Nguyễn Thái Sơn
29 tháng 7 2020 lúc 23:25

Sửa đề :

VP= (a+b+c)(a2+b2+c2-ab-bc-ca)

     =a3+ab2+ac2-a2b-abc-ca2+ba2+b3+bc2-ab2-b2c-abc+ca2+cb2+c3-abc-bc2-c2a

     =a3+b3+c3-3abc

Cách này đỡ phức tạp hơn cách của edogawa conan

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 7 2020 lúc 7:13

Biến đổi VP thì dễ hơn -.-

Sửa đề như anh Sơn :> 

VP = ( a + b + c )( a2 + b2 + c2 - ab - bc - ca )

      = a( a2 + b2 + c2 - ab - bc - ca ) + b( a2 + b2 + c2 - ab - bc - ca ) + c( a2 + b2 + c2 - ab - bc - ca )

      = a3 + ab2 + ac2 - a2b - abc - ca2 + a2b + b3 + bc2 - ab2 - b2c - abc + ca2 + cb2 + c3 - abc - bc2 - c2a

      = a3 + b3 + c3 - 3ab = VT ( đpcm )

Khách vãng lai đã xóa
Nguyễn Xuân Đình Lực
Xem chi tiết
Akai Haruma
27 tháng 6 2020 lúc 0:45

Lời giải:

Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.

BĐT cần chứng minh tương đương với:

$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$

$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$

Áp dụng BĐT Bunhiacopxky:

$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$

$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$

BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

tthnew
4 tháng 7 2020 lúc 10:04

SOS là ra, khá đơn giản. Ta có:

$$\text{VP}-\text{VT}=ab \left( -c+a \right) ^{2}+ca \left( b-c \right) ^{2}+cb \left( a-b
\right) ^{2}\geqq 0.$$

Đẳng thức xảy ra khi $a=b=c.$

Nguyễn Xuân Đình Lực
Xem chi tiết
Phùng Minh Quân
27 tháng 6 2020 lúc 19:33

a,b,c>0 

\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)

Khách vãng lai đã xóa