Tìm GTNN của:
D=5x2+2x-3
Tìm GTNN của: M=5x2-2x+7
\(M=5x^2-2x+7=5\left(x^2-\dfrac{2}{5}x+\dfrac{1}{25}\right)+\dfrac{34}{5}\)
\(=5\left(x-\dfrac{1}{5}\right)^2+\dfrac{34}{5}\ge\dfrac{34}{5}\)
\(minM=\dfrac{34}{5}\Leftrightarrow x=\dfrac{1}{5}\)
\(M=5x^2-2x+7\)
=> \(M=5x^2-5\dfrac{2}{5}x+5\dfrac{1}{25}+\dfrac{34}{5}\)
=> \(M=5\left(x-\dfrac{1}{5}\right)^2+\dfrac{34}{5}\)
mà \(5\left(x-\dfrac{1}{5}\right)^2\)≥0 => \(5\left(x-\dfrac{1}{5}\right)^2+\dfrac{34}{5}\)≥\(\dfrac{34}{5}\)
vậy Min M = 34/5 dấu = xảy ra khi x=1/5
Tìm GTNN của A=5x2-6x+5 trên x2-2x+1.
`A=(5x^2-6x+5)/(x^2-2x+1)`
Xét `A-4`
`=(5x^2-6x+5-4x^2+8x-4)/(x-1)^2`
`=(x^2+2x+1)/(x-1)62`
`=(x+1)^2/(x-1)^2>=0`
`=>A>=4`
Dấu "=" `<=>x+1=0<=>x=-1`
`A=(5x^2-6x+5)/(x^2-2x+1)`
Xét `A-4`
`=(5x^2-6x+5-4x^2+8x-4)/(x-1)^2`
`=(x^2+2x+1)/(x-1)^2`
`=(x+1)^2/(x-1)^2>=0`
`=>A>=4`
Dấu "=" `<=>x+1=0<=>x=-1`
Tìm GTNN của:
B = 5x2 + 4xy - 2(x - 2y) + 2y2 + 3
B=5x2+4xy-2(x-2y)+2y2+3
=5x2+4xy-2x+4y+2y2+3
=(4x2+4xy+y2)+(x2-2x+1)+(y2+4y+4)-2
=(2x+y)2+(x-1)2+(y+2)2-2 \(\ge\) -2
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
tìm GTNN của biểu thức A=5x2+2y2-4xy-8x-4y+19
A=5x2+2y2−4xy−8x−4y+19=(2x2−4xy+2y2)+4(x−y)+(3x2−12x)+19=2(x−y)2+4(x−y)+3(x2−4x+4)+7=2[(x−y)2+2(x−y)+1]+3(x−2)2+5=2(x−y+1)2+3(x−2)2+5≥0Dấu "=" xảy ra khi{x−y+1=0x−2=0↔{x=2y=x+1=3VậyMinA=5↔{x=2y=3
mik viết 5x2 là 5x mũ 2 nha
Tìm GTNN của các đa thức sau:
A=5x2-|6x-1|-1
B=9x2-6x-4|3x-1|+6
C=2(x+1)2+3(x+2)2-4(x+3)2
Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)
\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)
Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)
\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
\(C=2x^2+4x+2+3x^2+12x+12-4x^2-24x-36\\ C=x^2-8x-22=\left(x^2-8x+16\right)-38=\left(x-4\right)^2-38\ge-38\\ C_{min}=-38\Leftrightarrow x=4\)
Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)
\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)
Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)
\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)
tìm GTNN của biểu thức
E=x2+y2-x-2y+5
F=5x2-10x+3y2-6y+13
tìm GTNN của biểu thức A= 2x2-8x+1
Tìm GTLN của B = -5x2-4x+1
cảm ơn nha^^
a: Ta có: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=2
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2