CMR B=x^3+23n chia hết cho 24 với mọi n thuộc Z
CMR B=x^3+23n chia hết cho 24 với mọi n thuộc Z
Sửa đề: \(B=x^3+23x\) chia hết cho 6 với mọi x thuộc Z
\(B=x^3-x+24x\)
\(=x\left(x-1\right)\left(x+1\right)+24x\)
Vì x;x-1;x+1 là 3 số liên tiếp
nên x(x-1)(x+1) chia hết cho 3!=6
=>B chia hết cho 6
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
bài 1. CMR: n4-1 chia hết cho 8 với mọi n lẻ
bài 2. CMR: B=\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)là số nguyên với mọi n thuộc Z
bài 3. CMR: (n2+n-1)2 -1 chia hết cho 24 với mọi n thuộc Z
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ai giải giúp mình bài 2 và bài 3 với
chứng minh: n4+6n3+23n2+18n chia hết cho 24 với mọi n thuộc N
\(=n^4+2n^3+4n^3+8n^2+15n^2+30n-12n-24+24=\left(n+2\right)\left(n^3+4n^2+15n-12\right)+24\)
\(=\left(n+2\right)\left(n^3-3n^2+7n^2-21n+36n-12\right)+24=\left(n+2\right)\left(n-3\right)\left(n^2+7n+12\right)+24\)
\(=\left(n+2\right)\left(n-3\right)\left(n^2+3n+4n+12\right)+24=\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+1-4\right)+24\)
\(=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)-4\left(n+2\right)\left(n+3\right)\left(n+4\right)+24\)
(n+1)(n+2)(n+3)(n+4) là tích 4 số tự nhiên liên tiếp => chia hết cho 1.2.3.4=24
(n+2)(n+3)(n+4) là tích 3 số tự nhiên liên tiếp => chia hết cho 1.2.3=6 => 4(n+2)(n+3)(n+4) chia hết cho 4.6=24
biểu thức vừa thu gọn là tổng hiệu của các số chia hết cho 24 => chia hết cho 24
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
CMR: n4 + 2n3 - n2 - 2n chia hết cho 24 với mọi x thuộc Z
Phân tích đa thức thành nhân tử :
\(x^4+2n^3-n^2-2n\)
\(=n^3\left(x+2\right)-n\left(n+2\right)\)
\(=\left(n^3-n\right)\left(n+2\right)\)
\(=n\left(n^2-1\right)\left(n+2\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)
vì-là-tích-của-4-số-liên-tiếp
CHÚC-BẠN-HỌC-TỐT.....
CMR n^4 +2n^3-n^2 -2n chia hết cho 24 với mọi n thuộc Z
ta có:
n4 + 2n3 - n2 - 2n
= n4 - n3 + 3n3 - 3n2 + 2n2 - 2n
= (n4 - n3) + (3n3 - 3n2) + (2n2 - 2n)
= n3(n - 1) + 3n2(n - 1) + 2n(n - 1)
= (n3 + 3n2 + 2n)(n - 1)
= (n3 + n2 + 2n2 + 2n)(n - 1)
= [n2(n + 1) + 2n(n + 1)](n - 1)
= (n2 + 2n)(n + 1)(n - 1)
= (n - 1)n(n + 1)(n + 2)
Vì bốn số nguyên liên tiếp sẽ chia hết cho 24
=> (n - 1)n(n + 1)(n + 2) chia hết cho 24
Hay n4 + 2n3 - n2 - 2n chia hết cho 24
dài quá man's :v
\(A=n^4+2n^3-n^2-2n=n\left(n^3+2n^2-n-2\right)=n\left[\left(n^3-n\right)+\left(2n^2-2\right)\right]\)
\(=n\left[n\left(n^2-1\right)+2\left(n^2-1\right)\right]=n\left(n^2-1\right)\left(n+2\right)=n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
vì tích 4 số nguyên liên tiếp chia hết cho 24
<=> A \(⋮24\) --> đpcm
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
a) CMR:\(5x^3+15n^2+10n\)
Luôn chia hết cho 30 với mọi n thuộc Z
b) CMR: \(n^3\left(n^2-7\right)-36n\)
Chia hết cho 105 với mọi x thuộc Z
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)