1. Tìm x sao cho :
a) x+2/x+5 < x+1/x+4
b) x-1/x-2 < x+4/x+3
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
tìm x thỏa mãn:
a) (x+2)(x+3)-(x-2)(x-5)=-4
b) (x+1)(x2-x+1)-x(x-3)(x+3)=8
c) 4x2-9=(3x+1)(2x-3)
d) (3x+1)2-4(x-1)2=0
a: Ta có: \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x-5\right)=-4\)
\(\Leftrightarrow x^2+5x+6-x^2+7x-10=-4\)
\(\Leftrightarrow12x=0\)
hay x=0
b: Ta có: \(\left(x+1\right)\left(x^2-x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)
\(\Leftrightarrow x^3+1-x^3+9x=8\)
\(\Leftrightarrow9x=7\)
hay \(x=\dfrac{7}{9}\)
c: Ta có: \(4x^2-9=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x+1-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
Tìm x, biết :
a. 1/2 + x = 3/4
b. 5/2 - x = 1/3
c. 2. ( 1/3 + x ) = 1/5
d. 2/3 - ( 1/2 - x ) = 1/5
`a, 1/2 +x=3/4`
`=> x= 3/4 -1/2`
`=> x= 3/4-2/4`
`=>x= 1/4`
`b, 5/2 -x=1/3`
`=> x= 5/2 -1/3`
`=> x= 15/6 - 2/6`
`=>x= 13/6`
`c, 2 . (1/3 +x)=1/5`
`=> 1/3 +x=1/5:2`
`=> 1/3 +x= 1/10`
`=>x= 1/10-1/3`
`=>x= 3/30 - 10/30`
`=>x=-7/30`
`d, 2/3 - (1/2 -x)=1/5`
`=> 1/2-x= 2/3 -1/5`
`=>1/2-x= 10/15 - 3/15`
`=>1/2-x=7/15`
`=>x= 1/2-7/15`
`=>x=1/30`
`1/2 + x = 3/4`
`=> x = 3/4 - 1/2`
`=> x = 1/4`
`5/2 - x = 1/3`
`=> x = 5/2 - 1/3`
`=> x = 13/6`
`2.(1/3 + x) = 1/5`
`=>1/3 + x = 1/10 `
`=> x = 1/10 - 1/3`
`=> x = -7/30`
`2/3 - (1/2 -x)= 1/5`
`=> 1/2 - x = 7/15`
`=> x = 1/2 - 7/15`
`=> x = 1/30`
a. \(\dfrac{1}{2}+x=\dfrac{3}{4}\)
⇔ \(x=\dfrac{3}{4}-\dfrac{1}{2}\)
⇔ \(x=\dfrac{1}{4}\)
b. \(\dfrac{5}{2}-x=\dfrac{1}{3}\)
⇔ \(-x=\dfrac{1}{3}-\dfrac{5}{2}\)
⇔ \(-x=-\dfrac{13}{6}\)
⇔ \(x=\dfrac{13}{6}\)
c. \(2\left(\dfrac{1}{3}+x\right)=\dfrac{1}{5}\)
⇔ \(\dfrac{1}{3}+x=\dfrac{1}{5}\div2\)
⇔ \(x=\dfrac{1}{10}-\dfrac{1}{3}\)
⇔ \(-\dfrac{7}{30}\)
d. \(\dfrac{2}{3}-\left(\dfrac{1}{2}-x\right)=\dfrac{1}{5}\)
⇔ \(-\dfrac{1}{2}+x=\dfrac{1}{5}-\dfrac{2}{3}\)
⇔ \(x=-\dfrac{7}{15}+\dfrac{1}{2}\)
⇔ \(x=\dfrac{1}{30}\)
Bài 3: Cho biểu thức P= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
a) Rút gọn P nếu x ≥ 0, x ≠ 4
b) Tìm x để P = 2
a: Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b: Để P=2 thì \(3\sqrt{x}=2\sqrt{x}+4\)
hay x=16
a) 1/2 x 1/4 + 1/2 x 3/4
b) 4/5 x 1/2 - 1/2 x 1/4
Caâu 29. Cho \(\dfrac{x}{3}\) =\(\dfrac{y}{4}\) và x.y12 Kết quả tìm được của x và y là:
A. x = 3; y = 4 và x = -3; y = - 4
B. x = 2; y = 4 và x = -2; y = - 4
C. x = 1; y = 4 và x = -1; y = - 4
D. x = 4; y = 5 và x = -4; y = - 5
Cho biểu thức:
A = -\(\dfrac{x}{4-x}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) với x\(\ge\)0,x\(\ne\)4
B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
a) Rút gon A
b) Tính giá trị của A khi x=36
c) Tìm x để A=-\(\dfrac{1}{3}\)
d) Tìm x nguyên đề để biểu thức A có giá trị nguyên
e) Tìm x để A:B=-2
f) Tìm x để A đạt giá trị nhỏ nhất
\(a,A=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\\ b,x=36\Leftrightarrow A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\\ c,A=-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\\ \Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\\ d,A\in Z\Leftrightarrow1+\dfrac{2}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;1;3;4\right\}\\ \Leftrightarrow x\in\left\{0;1;9;16\right\}\)
\(e,A:B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}=-2\\ \Leftrightarrow\sqrt{x}=-2\sqrt{x}-2\\ \Leftrightarrow\sqrt{x}=-\dfrac{2}{3}\left(ktm\right)\\ \Leftrightarrow x\in\varnothing\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
a. x+1/x-2 - x/x+2 + 8/x2 -4
b. x-3/x+1 - x+2/x-1 + 8x/x2 -1
c. x+2/x2-2x + 2/x2+2x + 3x+2/x2-4
d. 4/x - 12/x2+3x + 5/x+3
a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)
c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)
a,
\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b,
\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)