x (7x - 42 ) + 10 (7x -42 ) =0
cho bất phương trình \(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}< 181-14x\)
với t \(=\sqrt{7x+7}+\sqrt{7x-6}\) (t \(\ge\)0 ), bất phương trình sẽ trở thành ?
\(\sqrt{7x+7}+\sqrt{7x-6}=t\ge0\)
\(bpt\Leftrightarrow t+t^2< 182\Leftrightarrow-14< t< 13\Leftrightarrow t< 13\Leftrightarrow\sqrt{7x+7}+\sqrt{7x-6}< 13\left(đk:x\ge\dfrac{6}{7}\right)\Leftrightarrow14x+1+2\sqrt{\left(7x+7\right)\left(7x-6\right)}< 169\Leftrightarrow2\sqrt{\left(7x+7\right)\left(7x-6\right)}< 168-14x\Leftrightarrow\left\{{}\begin{matrix}\left(7x+7\right)\left(7x-6\right)\ge0\\168-14x\ge0\\4\left(7x+7\right)\left(7x-6\right)< \left(168-14x\right)^2\end{matrix}\right.\)
\(giảibpt\Rightarrowđáp\) \(số\)
Tìm x :
\(x\left(x+6\right)-7x-42=0\)
\(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}}\)
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
7x=3y=2z và 7x-3y+4z=42
Ta có: 7x=3y=2z
nên \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{2}}\)
hay \(\dfrac{7x}{1}=\dfrac{3y}{1}=\dfrac{4z}{2}\)
mà 7x-3y+4z=42
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{7x}{1}=\dfrac{3y}{1}=\dfrac{4z}{2}=\dfrac{7x-3y+4z}{1-1+2}=\dfrac{42}{2}=21\)
Do đó:x=3; y=7; z=10,5
Tìm x biết :
7x + 14 = 42
7x + 14 = 42
7x = 42 - 14
7x = 28
x = 28 : 7
x = 4
Vậy x = 4
tìm x biết
e, ( 9x\(^2\)- 49)+ (3x + 7 ) ( 7x+3) = 0
g, ( x - 4)\(^2\)= ( 2x-1)\(^2\)
h, x\(^2\)- x\(^2\)+ x - 1 = 0
i, x + x\(^2\)+ x + 1 = 0
k, x(x+ 16) - 7x - 42 = 0
m, x\(^2\)+ 7x + 12 = 0
n, x\(^2\)- 7x + 12 = 0
e) \(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\text{[}\left(3x\right)^2-7^2\text{]}+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x-7\right)\left(3x+7\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\text{[}\left(3x-7\right)+\left(7x+3\right)\text{]}=0\)
\(\Rightarrow\left(3x+7\right)\left(3x-7+7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\left(10x-4\right)=0\)
=> 2 TH
*3x+7=0 *10x-4=0
=>3x=-7 =>10x=4
=>x=-7/3 =>x=4/10=2/5
vậy x=-7/3 hoặc x=2/5
g) \(\left(x-4\right)^2=\left(2x-1\right)^2\)
\(\Rightarrow\left(x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Rightarrow\left(x-4-2x+1\right)\left(x-4+2x-1\right)=0\)
\(\Rightarrow\left(-x-3\right)\left(3x-5\right)=0\)
\(\Rightarrow-\left(x+3\right)\left(3x-5\right)=0\)
=> 2 TH
*-(x+3)=0 *3x-5=0
=>-x=-3 =>3x=5
=x=3 =>x=5/3
h)\(x^2-x^2+x-1=0\)
\(\Rightarrow0+x-1=0\)
\(\Rightarrow x-1=0\)
=>x=0+1
=>x=1
vậy x=1
k, x(x+ 16) - 7x - 42 = 0
=>x^2+16x-7x-42=0
=>x^2+9x-42=0
vì x^2>0
do đó x^2+9x-42>0
nên o có gt nào của x t/m y/cầu đề bài
m)x^2+7x+12=0
=>x^2+3x++4x+12=0
=>x(x+3)+4(x+3)=0
=>(x+4).(x+3)=0
=>2 TH
=> *x+4=0
=>x=-4
vậy x=-4
*x+3=0
=>x=-3
vậy x=-3
n)x^2-7x+12=0
=>x^2-4x-3x+12=0
=>x(x-4)-3(x-4)=0
=>(x-3).(x-4)=0
=>2 TH
*x-3=0=>x=0+3=>x=3
*x-4=0=>x=0+4=>x=4
vậy x=3 hoặc x=4
a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1
b)(x+1)(x+2)(x+5)−x2(x+8)=27⇔x2+2x+x+2(x+5)−x3−8x2=27⇔x2(x+5)+2x(x+5)+x(x+5)+2(x+5)−x3−8x2=27⇔x3+5x2+2x2+10x+x2+5x+2x+10−x3−8x2=27⇔17x+10=27⇔17x=17⇒x=1
\(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\left(9x^2-49\right)+3x\left(7x+3\right)+7\left(7x+3\right)=0\)
\(9x^2-49+21x^2+9x+49x+21=0\)
\(30x^2+58x-28=0\)
\(2\left(15x^2+29x-14\right)=0\)
\(15x^2+29x-14=0\)
.... Tịt :))
tìm x:
x(x-5)-4x+20=0
x(x+6)-7x-42=0
x^3-5x^2+x-5=0
x^4-2x^3+10x^3-20x=0
a. x(x-5) -4x+20=0
<=> x(x-5) - 4(x-5)=0
<=> (x-5)(x-4)=0
<=>(x-5)=0 hoặc x-4=0
<=> x=5 hoặc x=4
Vậy x={4;5}
b.tương tự
c. x3-5x2+x-5 =0
<=> x2(x-5) + (x-5) = 0
<=> (x-5) (x2+1) = 0
<=> x-5=0 hoặc x2+1=0(loại vì x2=-1)
<=> x=5
vậy x=5
d. bạn kiểm tra lại đề
Tìm x :
a) \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
b) \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x^2+6x-7x-42=0\)
\(\Leftrightarrow\left(x^2+6x\right)-\left(7x+42\right)=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-6\end{matrix}\right.\)
c) \(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)+\left(x-5\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vôlí\right)\\x=5\end{matrix}\right.\)
d) \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)+\left(10x^2-20x\right)=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^3+10x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x\left(x^2+10\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x^2+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x^2=-10\left(vôlí\right)|x^2\ge0\forall x\end{matrix}\right.\)
a) 23+x=150
b) 300 : x - 18 =42.
c) 7x+3 = 723.78.
\(a,\Rightarrow x=150-23=127\\ b,\Rightarrow300:x=42+18=60\\ \Rightarrow x=300:60=5\\ c,\Rightarrow7^{x+3}=7^{23+8}=7^{31}\\ \Rightarrow x+3=31\Rightarrow x=28 \)
a) \(\Rightarrow x=150-23\)
\(\Rightarrow x=127\)
b) \(\Rightarrow300:x=60\)
\(\Rightarrow x=5\)
c) \(\Rightarrow7^{x+3}=7^{31}\)
\(\Rightarrow x+3=31\Rightarrow x=28\)
ai giúp e với
tìm x :
3x ( x + 1 ) - 2x ( x + 2 ) = - 1 - x
4x ( x - 2019 ) - x + 2019 = 0
( x - 4 )^2 - 36 = 0
x^2 + 8x + 16 = 0
x ( x + 6 ) - 7x - 42 = 0
25x^2 - 9 = 0
\(a,PT\Leftrightarrow3x^2+3x-2x^2-4x=-1-x\Leftrightarrow x^2=-1\left(\text{vô nghiệm}\right)\)
Vậy: ...
\(b,PT\Leftrightarrow4x\left(x-2019\right)-\left(x-2019\right)=0\Leftrightarrow\left(x-2019\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy: ...
\(c,PT\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy: ...
\(d,PT\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy: ...
\(e,PT\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy: ...
\(f,PT\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\Leftrightarrow x=\pm\dfrac{3}{5}\)
Vậy: ...