Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 1:03

Cách 1:

Gọi O là giao điểm của AC và BD.

 

Ta có:

\(\begin{array}{l}\overrightarrow {AG}  = \overrightarrow {AB}  + \overrightarrow {BG}  = \overrightarrow a  + \overrightarrow {BG} ;\\\overrightarrow {CG}  = \overrightarrow {CB}  + \overrightarrow {BG}  = \overrightarrow {DA}  + \overrightarrow {BG}  = - \overrightarrow b  + \overrightarrow {BG} ;\end{array}\)(*)

Lại có: \(\overrightarrow {BD} =\overrightarrow {BA}  + \overrightarrow {AD} =  - \overrightarrow a  + \overrightarrow b \).

\(\overrightarrow {BG} ,\overrightarrow {BD} \) cùng phương và \(\left| {\overrightarrow {BG} } \right| = \frac{2}{3}BO = \frac{1}{3}\left| {\overrightarrow {BD} } \right|\)

\( \Rightarrow \overrightarrow {BG}  = \frac{1}{3}\overrightarrow {BD}  = \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right)\)

Do đó (*) \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AG}  = \overrightarrow a  + \overrightarrow {BG}  = \overrightarrow a  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\\\overrightarrow {CG}  = -\overrightarrow b  + \overrightarrow {BG}  = -\overrightarrow b  + \frac{1}{3}\left( { - \overrightarrow a  + \overrightarrow b } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b ;\end{array} \right.\)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)

Kiều Sơn Tùng
24 tháng 9 2023 lúc 1:04

Cách 2:

Gọi AE, CF là các trung tuyến trong tam giác ABC.

Ta có: 

\(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AE}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\overrightarrow {AB}  + \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)} \right] \\= \frac{1}{3}\left( {2\overrightarrow a  + \overrightarrow b } \right) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b \)

\(\overrightarrow {CG}  = \frac{2}{3}\overrightarrow {CF}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } \right) = \frac{2}{3}.\frac{1}{2}\left[ {\left( {\overrightarrow {CB}  + \overrightarrow {CD} } \right) + \overrightarrow {CB} } \right] = \frac{1}{3}\left( {2\overrightarrow {CB}  + \overrightarrow {CD} } \right) = \frac{1}{3}\left( { - 2\overrightarrow {AD}  - \overrightarrow {AB} } \right) =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b \)

Vậy \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b ;\;\overrightarrow {CG}  =  - \frac{1}{3}\overrightarrow a  - \frac{2}{3}\overrightarrow b .\)

DmahdhjshbBdgh
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 14:54

Gọi M là trung điểm BC, theo tính chất trọng tâm:

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

Mà I là trung điểm AG \(\Rightarrow\overrightarrow{IG}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AM}\Rightarrow\overrightarrow{GI}=-\dfrac{1}{3}\overrightarrow{AM}\)

Lại có: M là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)

Nên ta có:

\(\overrightarrow{AB}+\overrightarrow{AC}+6\overrightarrow{GI}=\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{AM}+\overrightarrow{MC}+6.\left(-\dfrac{1}{3}\right)\overrightarrow{AM}\)

\(=2\overrightarrow{AM}-2\overrightarrow{AM}=\overrightarrow{0}\) (đpcm)

Nguyễn Thảo Nguyên
Xem chi tiết
Hà Vy
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2021 lúc 9:38

Nối OA, gọi M là trung điểm BC \(\Rightarrow\) OM cố định

Qua G kẻ đường thẳng song song OA cắt OM tại P

Trong tam giác OAM, theo định lý Talet:

\(\dfrac{GP}{OA}=\dfrac{PM}{OM}=\dfrac{GM}{AM}=\dfrac{1}{3}\)

Ta có những điều sau:

\(PM=\dfrac{1}{3}OM\) , mà O cố định, M cố định \(\Rightarrow\) P cố định

\(GP=\dfrac{1}{3}OA\Rightarrow GP=\dfrac{R}{3}\)

P cố định, độ dài \(\dfrac{R}{3}\) cố định 

\(\Rightarrow\) Quỹ tích G là đường tròn (P) tâm P bán kính \(r=\dfrac{R}{3}\) (1)

Mặt khác BGCD là hình bình hành \(\Rightarrow\) D đối xứng G qua M (2)

(1);(2) \(\Rightarrow\) quỹ tích D là ảnh của đường tròn (P) qua phép đối xứng tâm M

Nguyễn Việt Lâm
24 tháng 7 2021 lúc 9:39

undefined

Le Khong Bao Minh
Xem chi tiết
dương thị loan
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 11 2021 lúc 15:34

Do G là trọng tâm tam giác 

\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=\dfrac{1}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}+\dfrac{1}{3}\overrightarrow{AC}\)

\(=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}=-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\)

Do I là trung điểm AG

\(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{2}\left(-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right)=-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)

\(\overrightarrow{AK}=\dfrac{1}{5}\overrightarrow{AB}=\dfrac{1}{5}\left(\overrightarrow{AC}+\overrightarrow{CB}\right)=-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)

\(\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{CA}-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)

\(\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=\overrightarrow{CA}-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}=\dfrac{4}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)

Nguyễn Việt Lâm
4 tháng 11 2021 lúc 15:36

undefined

Beo Nguyen Dung
Xem chi tiết
Capheny Bản Quyền
6 tháng 10 2020 lúc 12:12

mk bận đi ch nên chỉ tạm câu a nha 

vẽ 3 đường trung tuyến AD ; BE ; CF 

VT = 

\(GA+GB+GC\)   ( nhớ thêm dấu vec tơ nha ) 

\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)  

\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\)     ( quy tắc hình bình hành ) 

\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\) 

\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)    

\(=0=VP\)

Khách vãng lai đã xóa
Đỗ Khánh Linh
6 tháng 10 2020 lúc 20:51

.... chua hoc

Khách vãng lai đã xóa