Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhi •-•
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 21:19

3:

a: \(\sqrt{\dfrac{2}{3}}=\sqrt{\dfrac{6}{9}}=\dfrac{\sqrt{6}}{3}\)

b: \(\dfrac{x}{y}\cdot\sqrt{\dfrac{y}{x}}=\sqrt{\dfrac{x^2}{y^2}\cdot\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}=\dfrac{\sqrt{xy}}{y}\)

2:

a: 2căn 7=căn 28

3căn 2=căn 18

mà 28>18

nên 2*căn 7>3*căn 2

b: 5=2+3

mà 3>căn 2

nên 2+3>2+căn 2

=>5>2+căn 2

Võ Việt Hoàng
31 tháng 7 2023 lúc 7:48

1) a) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)

\(=\sqrt{49.2}-\sqrt{36.2}+0,5\sqrt{4.2}\)

\(=7\sqrt{2}-6\sqrt{2}+0,5.2\sqrt{2}\)

\(=7\sqrt{2}-6\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

b) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49}\)

\(=3\sqrt{a}-4\sqrt{a}+7=7-\sqrt{a}\)

2. a) \(2\sqrt{7}=\sqrt{4.7}=\sqrt{28}\)

\(3\sqrt{2}=\sqrt{9.2}=\sqrt{18}\)

Mà \(\sqrt{28}>\sqrt{18}\Rightarrow2\sqrt{7}>3\sqrt{2}\)

b) \(5=2+3=2+\sqrt{9}\)

Vì \(\sqrt{9}>\sqrt{2}\Rightarrow2+\sqrt{9}>2+\sqrt{2}\Rightarrow5>2+\sqrt{2}\)

3. a) \(\sqrt{\dfrac{2}{3}}=\sqrt{\dfrac{6}{9}}=\dfrac{\sqrt{6}}{3}\)

b) \(\dfrac{x}{y}.\sqrt{\dfrac{y}{x}}=\sqrt{\dfrac{x^2}{y^2}.\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}=\dfrac{\sqrt{xy}}{y}\)

Buddy
Xem chi tiết
Mai Trung Hải Phong
20 tháng 8 2023 lúc 20:16

tham khảo

a) Do \(0,85< 1\) nên hàm số \(y=0,85^x\) nghịch biến \(\mathbb{R}\).

Mà \(0,1>-0,1\) nên \(0,85^{0,1}< 0,85^{-0,1}\).

b) Do \(\pi>1\) nên hàm số \(y=\pi^x\) đồng biến trên \(\mathbb{R}\).

Mà \(-1,4< -0,5\) nên \(\pi^{-1,4}< \pi^{-0,5}\).

c) \(^4\sqrt{3}=3^{\dfrac{1}{4}};\dfrac{1}{^4\sqrt{3}}=\dfrac{1}{3^{\dfrac{1}{4}}}=3^{-\dfrac{1}{4}}\).

Do \(3>1\) nên hàm số \(y=3^x\) đồng biến trên \(\mathbb{R}\).

Mà \(\dfrac{1}{4}>-\dfrac{1}{4}\) nên \(3^{\dfrac{1}{4}}>3^{-\dfrac{1}{4}}\Leftrightarrow^4\sqrt{3}>\dfrac{1}{^4\sqrt{3}}\).

 

 

Nguyễn Thị Hải Anh
Xem chi tiết
Thuận Lê
4 tháng 8 2020 lúc 20:32

\(4\)và \(1+2\sqrt{2}\)

Ta có \(3=\sqrt{9}\)

           \(2\sqrt{2}=\sqrt{2^2.2}=\sqrt{8}\)

Ta lại có \(8< 9\Leftrightarrow\sqrt{8}< \sqrt{9}\)

Hay \(2\sqrt{2}< 3\)\(\Leftrightarrow1+2\sqrt{2}< 1+3\Leftrightarrow1+2\sqrt{2}< 4\)

Khách vãng lai đã xóa
Thuận Lê
4 tháng 8 2020 lúc 20:37

\(4\)và \(2\sqrt{6}-1\)

Ta có \(5=\sqrt{25}\)

          \(2\sqrt{6}=\sqrt{2^2.6}=\sqrt{24}\)

Ta lại có \(25>24\Leftrightarrow\sqrt{25}>\sqrt{24}\)

Hay \(5>2\sqrt{6}\Leftrightarrow5-1>2\sqrt{6}-1\Leftrightarrow4>2\sqrt{6}-1\)

Khách vãng lai đã xóa
Mai Thị Ngọc Quỳnh
Xem chi tiết
trần văn tấn tài
8 tháng 8 2020 lúc 21:56

ta có : căn bậc của 4 lớn hơn căn bậc của 3

hay 2 lớn hơn căn bậc hai của 3

nên căn bậc hai của 3 trừ 2 ra kết quả âm

mà căn bậc của 0,5 là kết quả dương

vậy căn bậc của 0,5 > căn bậc của căn bậc hai của 3 trừ 2

ráng đọc tí nghen, mình ko biết cách viết căn bậc ra sao  

Khách vãng lai đã xóa
Hiểu Linh Trần
Xem chi tiết
kudo shinichi
26 tháng 7 2018 lúc 6:04

Ta có: \(\hept{\begin{cases}\sqrt{0,2}>0\\1=\sqrt{1}< \sqrt{3}\Rightarrow1-\sqrt{3}< 0\end{cases}\Rightarrow1-\sqrt{3}< \sqrt{0,2}}\)

Ta có: \(\hept{\begin{cases}\sqrt{0,5}>0\\\sqrt{3}< \sqrt{4}=2\Rightarrow\sqrt{3}-2< 0\end{cases}\Rightarrow\sqrt{0,5}>\sqrt{3}-2}\)

Trần Đức Thắng
Xem chi tiết
Trần Thị Loan
24 tháng 6 2015 lúc 18:51

B= 0,5 <=> \(\frac{2-5\sqrt{x}}{\sqrt{x}+3}=0,5\)

<=> \(2.\left(2-5\sqrt{x}\right)=\sqrt{x}+3\) <=> 4 - 10\(\sqrt{x}\) = \(\sqrt{x}\) + 3

<=> 11\(\sqrt{x}\) = 1 <=> x = \(\frac{1}{11^2}=\frac{1}{121}\)(thỏa mãn)

c) Xét hiệu: B - \(\frac{2}{3}\) =   \(\frac{2-5\sqrt{x}}{\sqrt{x}+3}-\frac{2}{3}=\frac{6-15\sqrt{x}-2\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}=\frac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\) Với mọi x > = 0 

=> \(B\le\frac{2}{3}\)

Trần Đức Thắng
24 tháng 6 2015 lúc 18:08

Giúp mình đi mình rút gọn đi đi lại lại mà chẳng ra

Trần Thị Loan
24 tháng 6 2015 lúc 18:47

ĐK: x > = 0; x \(\ne\)1

\(B=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-1\right)}\)\(=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-1\right)}=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-1\right)}=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-1\right)}\)

\(\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-1\right)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

Hồ Thắng
Xem chi tiết
Phùng Thị Vân Anh
Xem chi tiết
Minh Hiền Trần
24 tháng 5 2016 lúc 12:46

\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)

\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)

Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)

Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).

Khiêm Nguyễn Gia
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 9 2021 lúc 10:17

\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)

\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)

Nguyễn Hoài Đức CTVVIP
8 tháng 9 2021 lúc 10:14

\(\sqrt{2}\) + \(\sqrt{3}\)  > 2