Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khanh Lê
Xem chi tiết
Phước Nguyễn
12 tháng 8 2016 lúc 17:50

Yêu cầu chứng minh  \(B\ge1\)  là đáp án đúng cho bài toán này. 

Không giải!

Hoàng Lê Bảo Ngọc
12 tháng 8 2016 lúc 17:51

Dễ thấy đề sai nếu cho x = y = 1 .

Phước Nguyễn
12 tháng 8 2016 lúc 20:16

Cho  \(B=\frac{x^3}{1+y}+\frac{y^3}{1+x},\)  trong đó,  \(x,y\)  là các số dương thỏa mãn điều kiện  \(xy=1\)

Chứng minh:  \(B\ge1\)

\(~~~~~~~~~~~~~~~~~~~~~~~~~~~\)

Trước hết, ta thực hiện công đoạn áp dụng bất đẳng thức  \(AM-GM\)  cho bốn số dương có dạng sau:

\(\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{x}{2}+\frac{1}{2}\ge4\sqrt[4]{\frac{x^3}{\left(1+y\right)}.\frac{\left(1+y\right)}{4}.\frac{x}{2}.\frac{1}{2}}=4\sqrt[4]{\frac{x^4}{16}}=2x\)

Khi đó, ta xây dựng được một bất đẳng thức cho riêng  phân số \(\frac{x^3}{1+y}\)  bằng cách suy ra từ kết quả vừa chứng minh ở trên:

\(\frac{x^3}{1+y}\ge\frac{3x}{2}-\frac{1}{2}-\frac{1+y}{4}\)  

Đổi biến theo vòng hoán vị  \(y\rightarrow x,\)  từ đây, ta thiết lập được đánh giá tương tự như sau, điển hình:

\(\frac{y^3}{1+x}\ge\frac{3y}{2}-\frac{1}{2}-\frac{1+x}{4}\)

Kết hợp hai bất đẳng thức vừa chứng minh ở trên, ta có đánh giá sau:

\(\frac{x^3}{1+y}+\frac{y^3}{1+x}\ge\frac{3x}{2}-\frac{1}{2}-\frac{1+y}{4}+\frac{3y}{2}-\frac{1}{2}-\frac{1-x}{4}\)

Biến đổi vế phải của bất đẳng thức trên, ta suy ra được:

\(\frac{x^3}{1+y}+\frac{y^3}{1+x}\ge\frac{5\left(x+y\right)-6}{4}\)

Hơn nữa, theo một kết quả quen thuộc, ta có:

\(x+y\ge2\sqrt{xy}=2\)(sử dụng giả thiết  \(xy=1\)  để suy ra đánh giá mới cho bài toán)

Do đó,

\(\frac{x^3}{1+y}+\frac{y^3}{1+x}\ge\frac{5.2-6}{4}=1\)

\(\Rightarrow\)  \(B\ge1\)

Cuối cùng, với  \(x=y=1\)  (thỏa mãn điều kiện) thì  \(B=1\)  nên ta suy ra  \(1\)  là giá trị nhỏ nhất  của biểu thức  \(B\)

Phép chứng minh hoàn tất.

Khanh Lê
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 8 2016 lúc 11:25

Bạn xem lại đề nhé , nếu x = y = 1 thì B = 1 < 4

game firtsf ago
11 tháng 8 2016 lúc 15:55

đây à

hehe

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
2 tháng 1 2021 lúc 19:39

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

Thỏ bông
Xem chi tiết
Đình Sang Bùi
23 tháng 9 2018 lúc 15:03

Từ x+y+z=3 ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

Nhân chéo ta có:

\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)

\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)

\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)

\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)

Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0

Với x+z=0 ta đc y=3

Với y+z=0 ta đc x=3

Với x+y=0 ta đc z=3

Từ đó suy ra đccm

Hải Linh Vũ
Xem chi tiết
Vuong Ngoc Nguyen Ha (Ga...
Xem chi tiết
tth_new
27 tháng 3 2019 lúc 6:28

b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:

\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)

\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Vuong Ngoc Nguyen Ha (Ga...
Xem chi tiết
Vuong Ngoc Nguyen Ha (Ga...
Xem chi tiết
Nguyễn trần Ngọc Bích
Xem chi tiết
alibaba nguyễn
21 tháng 4 2017 lúc 10:24

Ta có:

\(\left(y^2+y+1\right)\left(x^2+x+1\right)\)

\(=x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1\)

\(=x^2y^2+x^2+y^2+2xy+2=x^2y^2+3\)

Ta lại có:

\(\left(y^2+y+1\right)-\left(x^2+x+1\right)=\left(y^2-x^2\right)+\left(y-x\right)\)

\(=\left(y-x\right)\left(x+y+1\right)=-2\left(x-y\right)\)

Theo đề bài ta có: (sửa đề luôn)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{\left(y^2+y+1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

Arima Kousei
7 tháng 1 2019 lúc 19:14

Em xin đóng góp cách 2 ạ 

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{x^4-x-y^4+y}{x^3y^3-y^3-x^3+1}\)

\(=\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x^3+y^3\right)+1}\)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{x^3y^3-\left(x^2-xy+y^2\right)+x^2+2xy+y^2}\)

\(=\frac{\left(x-y\right)\left[x^2+y^2-\left(x+y\right)^2\right]}{x^3y^3+3xy}\)

\(=\frac{\left(x-y\right).\left(-2\right)xy}{xy\left(x^2y^2+3\right)}\)

\(=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Do \(\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)

Con Chim 7 Màu
10 tháng 2 2019 lúc 21:14

\(gt\Rightarrow y-1=-x\Rightarrow x-1=-y\)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Leftrightarrow\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left(x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+2xy+x^2+y^2+2\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(dpcm\right)\)