Tứ giác ABCD có \(\widehat{A}=110^0;\widehat{B}=100^0\). Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat{CED};\widehat{CFD}\)
BÀI 1 : CHO TỨ GIÁC ABCD CÓ : \(\widehat{A}+\widehat{B}=200^{^0};\widehat{B}+\widehat{C}=218^0;\widehat{C}+\widehat{D}=160^0\) TÍNH \(\widehat{C}\)VÀ \(\widehat{D}\)
BÀI 2 : CHO TỨ GIÁC ABCD CÓ \(\widehat{B}=80^0;\widehat{D}=120^0\)GÓC NGOÀI ĐỈNH C BẰNG 1300 . TÍNH GÓC A CỦA TỨ GIÁC
BÀI 3 : TỨ GIÁC ABCD CÓ \(\widehat{A}=57^0;\widehat{C}=110^0;\widehat{D}=75^0\).TÍNH GÓC NGOÀI TẠI ĐỈNH B
Cho tứ giác ABCD có AD//BC; \(\widehat{ABC}\)= 700 ; \(\widehat{BCD}\)=1100
Chứng minh tứ giác ABCD là hình bình hành
Ta có : \(\hept{\begin{cases}\widehat{ABC}=70^0\\\widehat{BCD}=110^0\end{cases}\Rightarrow\widehat{ABC}+\widehat{BCD}=180^0}\)
Mà 2 góc này ở vị trí trong cùng phía
nên AB // CD
Ta lại có AD // BC và AB // CD => ABCD là HBH
Tứ giác ABCD có AB = BC = AD ;\(\widehat{A}=110^0;\widehat{C}=70^0\)
CMR : a, DB là tia phân giác của \(\widehat{D}\)
b, ABCD là hình thang cân
Cho tứ giác ABCD có AD=DC=CB;\(\widehat{ADC}=110^0;\widehat{BCD}=130^0\)
Tính \(\widehat{ABC}\)
Tứ giác ABCD có\(\widehat{A}=110^0,\widehat{B}=100^0\) . Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat{CED,}\widehat{CFD}\)
Tứ giác ABCD có \(\widehat{A}=110^0,\widehat{B}=100^0\). Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat{CED},\widehat{CFD}\) ?
Tứ giác ABCD có : góc C + góc D = \(360^o\) - ( góc A + góc B )
góc C + góc D = \(360^o\) - ( \(110^o+100^o\) )
góc C + góc D = \(360^o\) - \(210^o\)
góc C + góc D = \(150^o\)
\(\Rightarrow\) Góc \(C_1\) + góc \(D_1\) = \(\dfrac{gocC+gocD}{2}\) = \(\dfrac{150^o}{2}\) = \(75^o\)
Xét \(\Delta CED\) có góc \(C_1\) + góc \(D_1\) + góc CED = \(180^o\) ( Tổng 3 góc của 1 \(\Delta\) )
\(75^o\) + góc CED = \(180^o\)
góc CED = \(180^o\) - \(75^o\)
góc CED = \(105^o\)
Vì DE và DF là các tia phân giác của hai góc kề bù ( gt)
\(\Rightarrow\) DE \(\perp\) DF
Vì CE và CF là các tia phân giác của hai góc kề bù ( gt )
\(\Rightarrow\) CE \(\perp\) CF
Xét tứ giác CEDF co :
góc E + góc ECF + góc EDF + góc F = \(360^o\) ( tổng 4 góc trong 1 tứ giác )
\(105^o+90^o+90^o\)+ góc F = \(360^o\)
góc F = \(360^o\) - ( \(105^o+90^o+90^o\) )
góc F = \(360^o\) - \(285^o\)
góc F = \(75^o\)
Tứ giác \(ABCD\) có \(\widehat A = 100^\circ \), góc ngoài tại đỉnh \(B\) bằng \(110^\circ \), \(\widehat C = 75^\circ \). Tính số đo góc \(D\)
Gọi góc ngoài đỉnh B là x
Ta có:
$\widehat {B} + x = 180^0 $
`=>`$ \widehat {B} + 110^0 = 180^0$
`=>` $\widehat {B} = 70^0$
Xét tứ giác ABCD:
$\widehat {A} + \widehat {B} + \widehat {C} + \widehat {D}= 360^0$
`=>` $100^0 + 70^0 + 75^0 + \widehat {D} = 360^0$
`=>` $\widehat {D} = 115^0$
Vậy, $\widehat {D} = 115^0.$
góc B=180-110=70 độ
góc D=360-100-70-75=115 độ
Cho tứ giác \(ABCD\), biết \(\widehat A = 60^\circ ;\;\widehat B = 110^\circ ;\;\widehat D = 70^\circ \). Khi đó số đo góc \(C\) là:
A. \(120^\circ \)
B. \(110^\circ \)
C. \(130^\circ \)
D. \(80^\circ \)
Ta có tổng 4 góc trong tứ giác là: \(360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Hay: \(60^o+110^o+\widehat{C}+70^o=360^o\)
\(\Rightarrow\widehat{C}=360^o-\left(110^o+60^o+70^o\right)120^o\)
Vậy chọn đáp án A
Cho Tứ giác ABCD có AD=DC=CB; \(\widehat{C}=130^o,\widehat{D}=110^o\). Tính \(\widehat{A}\),\(\widehat{B}\)
Cho tứ giác ABCD có \(\widehat{B}=110^o;\widehat{C}=120^o;\widehat{D}=60^o\)
a) Tính góc A
b) Chứng minh tứ giác ABCD là hình thang
c) Gọi M,N lần lượt là trung điểm của AB và CD. Biết BC=8cm,AD=12cm. Tính độ dài đoạn thẳng MN