Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NTB OFFICIAL
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2022 lúc 14:10

a: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác củagóc MOA(1)

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

=>ΔCOD vuông tại O

b: AC*BD=CM*MD=OM^2=R^2=AB^2/4

c: Xét (O) có

ΔMAB nội tiếp

AB là đường kính

Do đó: ΔMAB vuông tại M

=>ΔMAE vuông tại M

góc CMA+góc CME=90 độ

góc CAM+góc CEM=90 độ

mà góc CMA=góc CAM

nên góc CME=góc CEM

=>CE=CM=CA

Phương Anh Đỗ
Xem chi tiết
Hanazono Chiery
Xem chi tiết
hường diệu
Xem chi tiết
Dorris Linh
Xem chi tiết
Dorris Linh
1 tháng 12 2019 lúc 17:23

mik sửa lại 1 chút ở phần b là: chứng minh AC.BD=R2

Khách vãng lai đã xóa
Nguyễn Bảo Anh
Xem chi tiết
Nguyễn Bảo Anh
3 tháng 1 2021 lúc 20:36

Trả lời hộ mình cái xin. mình đã 2 năm ko on r giờ mới on lại :(((.Xin mọi người trả lời giúp mình :(((

Khách vãng lai đã xóa
nguyễn thư linh
Xem chi tiết
Trần Tuấn Hoàng
1 tháng 5 2023 lúc 11:09

△AMB nội tiếp đường tròn đường kính AB nên △AMB vuông tại M.

- Ta có: \(\widehat{CAB}+\widehat{DBA}=90^0+90^0=180^0\)

\(\Rightarrow\widehat{CAM}+\widehat{MAB}+\widehat{DBM}+\widehat{MBA}=180^0\)

\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+\left(\widehat{MAB}+\widehat{MBA}\right)=180^0\)

\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+90^0=180^0\) nên \(\widehat{CAM}+\widehat{DBM}=90^0\)

Tứ giác ANMC có: \(\widehat{NAC}+\widehat{NMC}=90^0+90^0=180^0\)

Nên tứ giác ANMC nội tiếp \(\Rightarrow\widehat{CAM}=\widehat{CNM}\)

Tứ giác BNMD có: \(\widehat{NBD}+\widehat{NMD}=90^0+90^0=180^0\)

\(\Rightarrow\)Tứ giác BNMD nội tiếp \(\Rightarrow\widehat{MBD}=\widehat{MND}\)

\(\Rightarrow\widehat{CNM}+\widehat{MND}=\widehat{CAM}+\widehat{MBD}=90^0\)

\(\Rightarrow\widehat{INK}=90^0\).

Tứ giác MINK có: \(\widehat{IMK}+\widehat{INK}=90^0+90^0=180^0\)

\(\Rightarrow\)Tứ giác MINK nội tiếp nên \(\widehat{MIK}=\widehat{MNK}\)

Lại có \(\widehat{MNK}=\widehat{MBD}\left(cmt\right)\) \(\Rightarrow\widehat{MIK}=\widehat{MBD}\)

Xét (O): \(\widehat{MBD}=\widehat{MAB}\left(=\dfrac{1}{2}sđ\stackrel\frown{MB}\right)\)

\(\Rightarrow\widehat{MIK}=\widehat{MAB}\) nên IK//AB

trần văn bằng
Xem chi tiết
Huyền
25 tháng 6 2019 lúc 8:43

a, Xét tứ giác AEMO có:

\(\widehat{OME}=90^0,\widehat{OAE}=90^0\Leftrightarrow\widehat{OME}+\widehat{OAE}=180^0\)

mà 2 góc này ở vị trí đối nhau nên tứ giác AEOM nt đường tròn đk EO

b, Theo tính chất tiếp tuyến ta thấy:

EO là tia phân giác của MOA

OF là tia phân giác của MOB

mà MOB và MOA là hai góc kề bù nên EOF =90

c,ta thấy

OMEA nt đường tròn đk EO nên MAB=FEO(cùng nhìn cạnh MO)

xét \(\Delta ABM\)\(\Delta OEF\)

\(\widehat{MAB}=\widehat{OEF}\left(cmt\right)\)

\(\widehat{AMB}=\widehat{EOF}\left(=90^0\right)\)

\(\Rightarrow\Delta ABM\sim\Delta EFO\)\(\Rightarrow dpcm\)

Đặng Huỳnh Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 23:00

5:

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

b: Xét ΔAEB vuông tại E và ΔDAB vuông tại A có

góc ABE chung

=>ΔAEB đồng dạng với ΔDAB

c: ΔABD vuông tại A có AE là đường cao

nên BE*BD=BA^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>BE*BD=BH*BC

d: BE*BD=BH*BC

=>BE/BC=BH/BD

=>ΔBEH đồng dạng với ΔBCD

=>góc BHE=góc BDC