Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Đông
Xem chi tiết
nthv_.
28 tháng 9 2021 lúc 15:52

nthv_.
28 tháng 9 2021 lúc 15:53

undefined

Nguyễn Hoàng Minh
28 tháng 9 2021 lúc 15:54

\(a,\) Áp dụng HTL:

\(AH^2=BH\cdot HC\Rightarrow HC=\dfrac{AH^2}{BH}=10,24\left(cm\right)\\ BC=BH+CH=35,24\left(cm\right)\\ \left\{{}\begin{matrix}AB^2=HB\cdot BC=881\\AC^2=HC\cdot BC=360,8576\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{881}\left(cm\right)\\AC\approx19\left(cm\right)\end{matrix}\right.\)

\(b,\) Áp dụng HTL:

\(AB^2=BH\cdot BC\Rightarrow BC=\dfrac{AB^2}{BH}=24\left(cm\right)\\ HC=BC-BH=18\left(cm\right)\\ \left\{{}\begin{matrix}AH^2=BH\cdot HC=108\\AC^2=CH\cdot BC=432\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AH=6\sqrt{3}\left(cm\right)\\AC=12\sqrt{3}\left(cm\right)\end{matrix}\right.\)

\(c,\) Áp dụng HTL:

\(BC=BH+HC=13\left(cm\right)\\ \left\{{}\begin{matrix}AB^2=BH\cdot BC=117\\AC^2=CH\cdot BC=52\\AH^2=BH\cdot CH=36\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=3\sqrt{13}\left(cm\right)\\AC=2\sqrt{13}\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)

 

Tấn Thanh
Xem chi tiết
thiyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 22:10

BC=BH+CH=13cm

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC; AB^2=BH*BC; AC^2=CH*BC

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right);AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right);AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)

Kami no Kage
Xem chi tiết
Nguyễn Bảo Trâm
22 tháng 9 2015 lúc 12:57

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

Nguyễn Trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 22:40

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

AC=20(cm)

\(\widehat{B}\simeq37^0\)

\(\widehat{C}\simeq53^0\)

Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 22:43

Áp dụng HTL:

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\Rightarrow BC=BH+BC=25\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=15\left(cm\right)\\AC=\sqrt{CH\cdot BC}=20\left(cm\right)\end{matrix}\right.\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\approx53^0\Rightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)

Trang Thuy
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 10 2021 lúc 9:43

Áp dụng HTL:

\(\dfrac{1}{AH^2}=\dfrac{1}{51,84}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{144}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AC^2}=\dfrac{1}{81}\Rightarrow AC=9\left(cm\right)\)

Áp dụng PTG \(BC=\sqrt{BA^2+AC^2}=15\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)

nguyễn anh duy
Xem chi tiết
HT.Phong (9A5)
1 tháng 10 2023 lúc 8:18

Xét tam giác ABC vuông tại A ta có:

\(AB^2=BC\cdot BH\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{2}{3}\right)^2}{12}=\dfrac{1}{27}\left(cm\right)\)  

Mà: \(BC=CH+BH\)

\(\Rightarrow CH=12-\dfrac{1}{27}=\dfrac{323}{27}\left(cm\right)\)  

\(AC^2=BC\cdot CH\)

\(\Rightarrow AC=\sqrt{BC\cdot CH}=\sqrt{12\cdot\dfrac{323}{27}}=\dfrac{2\sqrt{323}}{3}\left(cm\right)\) 

Mà: \(AH\cdot BC=AB\cdot AC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{2}{3}\cdot\dfrac{2\sqrt{323}}{3}}{12}=\dfrac{\sqrt{323}}{27}\left(cm\right)\)

nguyễn thảo hân
Xem chi tiết
Hạ Ann
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)