Tìm GTNN
B=2015+|2014-2x|
Tìm GTNN
B= -14+2X^2+X
B=2(x^2+2.x.1/4 +1/16)^2 -57/8
=2.(x+1/4)^2 -57/8
MinB=-57/8 khi x=-1/4
\(B=-14+2x^2+x=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{113}{8}=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{113}{8}\ge-\dfrac{113}{8}\)\(ĐTXR\Leftrightarrow x=-\dfrac{1}{4}\)
\(B=2x^2+x-14\)
\(=2\left(x^2+\dfrac{1}{2}x-7\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{113}{16}\right)\)
\(=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{113}{8}\ge-\dfrac{113}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{4}\)
tìm GTNN
B=x^2+y^2-2x+4y+2010
`B=x^2 +y^2 -2x+4y+2010`
`=x^2 -2x+1+y^2 +4y+4+2005`
`=(x-1)^2 + (y+2)^2 +2005 >= 2005`
Dấu "=" xảy ra `<=>{(x-1=0),(y+2=0):}<=>{(x=1),(y=-2):}`
Vậy `B_(min) = 2005 <=> {(x=1),(y=-2):}`
`B=x^2+y^2-2x+4y+2010`
`B=x^2-2x+y^2+4y+2010`
`B= x^2-2.x.1+1^2-1^2 +y^2+2y.2+2^2-2^2+2010`
`B= (x^2-2x+1)+(y^2+4y+4)-1-4+2010`
`B= (x-1)^2 +(y+2)^2 +2005≥2005`
nên `B` đạt GTNN là `B=2005`
khi đó \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\) `<=>`\(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a) Tìm GTLN của biểu thức: A = -2x2 - 2xy - y2 + 2x - 2y + 20
b) Tính: \(\frac{2014.(2015^2+2016)-2016.(2015^2-2014)}{2014.(2013^2-2012)-2012.(2013^2+2014)}\)
b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)
\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)
\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)
Tìm x:
a) |2x + 2014| + |x+2015| = 0
b) |x + 2014| + |x- 2015| lớn hơn hoặc bằng 0
a,|2x+2014| lớn hơn hoặc bằng 0
|x+2015| lớn hơn hoặc bằng 0
mà |2x+2014|+|x+2015|=0
=> |2x+2014|=0
x=-1007
|x+2015|=0
x=-2015 (vô lí)
=> x thuộc tập hp rỗng
tìm giá trị tuyệt đối của
A= /2x-1/+5
B= 2015 + /2014-2x/
(/ là dấu giá trị tuyệt đối)
\(A=\left|2x-1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(B=\left|2x-2014\right|+2015\ge2015\forall x\)
Dấu '=' xảy ra khi x=1007
tìm x biết 2x-1/x+2015-4023/x+2017=x-2014/2x-4036-x-2013/2x-4038 x thuộc n
Tìm các gtrị x,y thoả mãn |2x-3y|^2015+(x+y-5)^2014=0
tìm giá trị nhỏ nhất hoặc lớn nhất nếu có của
C=2|x-2014|+|2x-2015|
Tìm x biết:
x-2014-2015/2013 + x-2013-2015/2014 + x-2014-2013/2015=3
\(x-2014-\frac{2015}{2013}+x-2013-\frac{2015}{2014}+x-2014-\frac{2013}{2015}=3\)
\(\Rightarrow\left(x+x+x\right)+\left(-2014-2014\right)-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x=3+2013+\frac{2015}{2013}+\frac{2015}{2014}+\frac{2013}{2015}\)
bạn ơi bài này số lớn quá bạn sử dungjmays tính rồi tự tính nhé
Đáp án của bạn Hoàng Đình Đại sai rùi nhưng dù sao cx cảm ơn nhiều