Chứng minh rằng:
n(n^2+1)×(n^2+4) chia hết cho 5 với mọi n thuộc N
Giúp mk nhé. Hứa tặng 3 tick luôn
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Chứng minh rằng:n^2*(n+1)+2n*(n+1) luôn chia hết cho 6 với mọi số nguyên n.
giải giúp mình với, cảm ơn nhiều.
Ta có : \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n là số nguyên , n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 => n(n+1)(n+2) chia hêt cho 2x3 = 6
Hay \(n^2\left(n+1\right)+2n\left(n+1\right)\)luôn chia hết cho 6 với mọi số nguyên n.
a-Chứng minh rằng:n^2(n+1)+2n(n+1) chia hết 6 với mọi n thuộc Z
b-Cho x,y là 2 số khác nhau
Chứng minh rằng:nếu x(x-y)-10(y-x)^2=0 thì 9x=10y
giúp mk đi..gấp lắm òi....help me!!!!
Biết n thuộc Z, n không chia hết cho 2 và 3. Chứng minh: 4.(n^2)+3n+5 chia hết cho 6
ĐỀ CÓ NHIU ĐÓ THÔI! AI LÀM ĐC GIÚP MÌNH VỚI, GẤP LẮM! HỨA TICK ^^
khó thế ai làm đc
Bg
Ta có n không chia hết cho 2 và 3 (n \(\inℤ\))
=> n không chia hết cho 6
Vì n không chia hết cho 6 và 2 và 3 nên n chia 6 dư 1 và chia 6 dư 5.
=> n có dạng 6x + 1 hoặc 6x + 5 (với x \(\inℤ\))
Xét n = 6x + 1:
=> 4.(n2) + 3n + 5 = 4.(n2) + 3(6x + 1) + 5
Vì n chia 6 dư 1 nên n2 chia 6 dư 1 => n2 có dạng 6x + 1 luôn
= 4(6x + 1) + 3(6x + 1) + 5
= 24x + 4 + 18x + 3 + 5
= 24x + 18x + (4 + 3 + 5)
= 24x + 18x + 12
Vì 24x \(⋮\)6; 18x \(⋮\)6 và 12 \(⋮\)6
Nên 24x + 18x + 12\(⋮\)6
=> 4.(n2) + 3n + 5 \(⋮\)6
=> ĐPCM
@Trần Công Mạnh thanks nha, tặng bạn 1 tk như đã hứa!! ^^
chứng minh rằng:n(n^2+1)(n^2+4) chia hết cho 5
Nhận xét : số chính phương chia 5 dư 0;1;4
Đặt A = n.(n^2+1).(n^2+4)
Nếu n^2 chia hết cho 5 => n chia hết cho 5 ( vì 5 nguyên tố ) => A chia hết cho 5
Nếu n^2 chia 5 dư 1 => n^2+4 chia hết cho 5 => A chia hết cho 5
Nếu n^2 chia 5 dư 4 => n^2+1 chia hết cho 5 => A chia hết cho 5
Vậy A chia hết cho 5
Tk mk nha
Chứng minh rằng : n.(n+5) - (n-3) (n+2) luôn luôn chia hết cho 6 với mọi x thuộc Z
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6\)
\(=6\left(n+1\right)\) chia hết cho 6
=>\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho 6
Chứng minh rằng:n(n+1)(2n+1)(3n+1)(4n+1) chia hết cho 5 với mọi số tự nhiên n
Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)
+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia hết cho 5 => A chia hết cho 5
Vậy A luôn chia hết cho 5
Tk mk nha
-Xét n có dạng 5k thì tích có n chia hết cho 5 nên chia hết cho 5
-Xét n có dạng 5k+1 thì 4n +1=4x(5k+1)+1=20k+4+1=20k+5 chia hết cho 5.Vậy tích cũng chia hết cho 5
-Xét n có dạng 5k+2 thì 2n+1=2x(5k+2)+1=10k +4+1=10k+5 chia hết cho 5.Vậy tích chia hết cho 5
-Xét n có dạng 5k+3 thì 3n+1=3x(5k+3)+1=15k+9+1=15k+10 chia hết cho 5.Vậy tích chia hết cho 5
-Xét n có dạng 5k+4 thì n+1=5k+4+1=5k+5 chia hết cho 5.Vậy tích chia hết cho 5
Từ các trường hợp trên,suy ra tích nx(n+1)x(2n+1)x(3n+1)x(4n+1)chia hết cho 5 với mọi số tự nhiên n
Ta có:
Nếu n:5 (dư 1) thì ⇒4n+1 chia hết cho 5
Nếu n:5 (dư 2) thì ⇒3n+1 chia hết cho 5
Nếu n:5 (dư 3) thì ⇒2n+1 chia hết cho 5
Nếu n:5 (dư 4) thì ⇒ n+1 chia hết cho 5
⇒Với mọi số tự nhiên thì A luôn chia hết cho 5
Vậy A luôn chia hết cho 5
Chứng minh
n.(n+1).(n+2).(n+3).(n+4) chia hết cho 5 với mọi n thuộc N.
(n+1).(3n+2) chia hết cho 2 với mọi n thuộc N
a/ Nếu n chia hết cho 5 thì n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với mọi n
+ Nếu n chia 5 dư 1 thì n có dạng 5k+1 => n+4=5k+5=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2 =5K+3+2=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+1 = 5k+4+1=5(k+1) chia hết cho 5
=> Biểu thức rên chia hết cho 5 với mọi n
b/
+ Nếu n lẻ => n+1 chẵn và 3n+2 lẻ => (n+1)(3n+2) chẵn => chia hết cho 2
+ Nếu n chẵn => n+1 lẻ và 3n+2 chẵn => (n+1)(3n+2) chẵn => chia hết cho 2
=> biểu thức chia hết cho 2 với mọi n thuộc N
hãy chứng minh
n . ( n2 + 1 ) . ( n2 + 4 ) luôn chia hết cho 5 với mọi n thuộc N