tam giác abc nhọn ah la đường cao .m,n lần lượt là hchiếu trên ab,ac . chung minh am.ad=an.ac
Câu 1. Cho tam giác ABC nhọn có đường cao AH. Gọi M và N lần lượt là hình chiếu của H lên AB và AC. Chứng minh rằng AM.AB = AN.AC.
Câu 1. Cho tam giác ABC nhọn có đường cao AH. Gọi M và N lần lượt là hình chiếu của H lên AB và AC. Chứng minh rằng AM.AB = AN.AC.
Áp dụng hệ thức lượng trong tam giác vuông ABH với đường cao BM:
\(AH^2=AM.AB\) (1)
Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao CN:
\(AH^2=AN.AC\) (2)
(1);(2)\(\Rightarrow AM.AB=AN.AC\)
Cho tam giác ABC có ba góc nhọn, đường cao AH. Gọi M, N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC.
Chứng minh:
a) AM.AB = AN.AC
b) ∆AMN đồng dạng ∆ACB
a: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b: \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN và ΔACB có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
\(\widehat{MAN}\) chung
Do đó: ΔAMN đồng dạng với ΔACB
Cho tam giác ABC vuông tại A,đường cao AH.
a,Chứng minh: tam giác ABC đồng dạng với tam giác HBA.
b,Biết AB=8cm,AC=15cm.Tính AH,Sabc/Shac
c,Gọi M,N lần lượt là hình chiếu của H trên AB,Ac.Chứng Minh AM.AB=AN.Ac
a: Xét ΔABC vuông tai A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{8^2+15^2}=17\left(cm\right)\)
AH=8*15/17=120/17(cm)
c: AM*AB=AH^2
AN*AC=AH^2
=>AM*AB=AN*AC
Bài 1: Cho tam giác ABC có AB= 28cm, AC= 35cm, góc A= 60 độ. Tính BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng:
a) AM.AB=AN.AC
b) AM.AB+AN.AC= 2 MN2
c) AM.BM+AN.CN= AH2
d) BM/CN = AB3/AC3
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB,AC.
a, AM.AB=AN.AC
b,BM/CN=AB^3/AC^3
a/
Xét tg vuông ABH
\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông ACH có
\(AH^2=AN.AC\) (lý do như trên)
\(\Rightarrow AM.AB=AN.AC\)
b/
\(AN\perp AB;MH\perp AB\) => AN//MH
\(AM\perp AC;NH\perp AC\) => AM//NH
=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
Mặt khác \(\widehat{A}=90^o\)
=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)
Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABH đồng dạng với tg ACH
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế
\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)
Xét tg vuông ABH
\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)
Xét tg vuông ACH, c/m tương tự
\(NH^2=CN.AN\) (3)
Thay (2) và (3) vào (1)
(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)
Mà AM = NH; AN = MH (cmt)
\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)
cho tam giác abc vuông tại a có đường cao ah chia cạnh huyền bc thành hai đoạn bh=4 hc=9 a) tính ah,ab,ac b) gọi m,n lần lượt là hình chiếu của h trên ab và ac chứng minh rằng am.ab=an.ac
a: BC=BH+CH
=4+9=13
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>AH=6
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)
b: ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, đường cao AH. a) Tính BC, BH, AH. b) Gọi M, N lần lượt là chân đường vuông góc kẻ từ H đến AB, AC. Chứng minh rằng : AM.AB = AN.AC
\(a,\text{Áp dụng PTG:}BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \text{Áp dụng HTL:}\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\\ b,\text{Áp dụng HTL:}\left\{{}\begin{matrix}AM\cdot AB=AH^2\\AN\cdot AC=AH^2\end{matrix}\right.\\ \Rightarrow AM\cdot AB=AN\cdot AC\)
cho tam giác ABC nhọn, đường cao AH, gọi M, N lần lượt là hình chiếu của H trên AB, AC. Chứng minh MN= AH.sinA