b) 49^6.5-7^11/(-7)^10.5+2.49^5
2^12.3^5-4^6.3^6/2^12.9^3+8^4.3^5
Rút gọn:
a) 2^12.3^5-4^6.3^6/2^12+9^3+8^4.3^5
B) 49^6.5-7^11/(-7)^10.5-2.49^5
Câu 1 xem kỉ đề
\(B,\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5-2.49^5}=\frac{7^{12}.5-7^{11}}{7^{10}.5-2.7^{10}}=\frac{7^{11}.\left(7.5-1\right)}{7^{10}.\left(5-2\right)}=\frac{7.34}{3}=\frac{238}{3}\)
a) A=212.35-\(\frac{2^{12}.3^6}{2^{12}}\)+93+84.35
=212.35-36+36+212.35
=213.35
b)B=496.5-5.\(\frac{7^{11}}{\left(-7\right)^{10}}-2.49^5\)
=496.5-7.5-2.495
=712.5-7.5-2.710
Tính
\(\frac{2^{12}.3^5-4^6.3^6}{2^{12}.9^3+8^4.3^5}\)
\(\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5-2.49^5}\)
a. - \(\frac{-1}{2}\)
b. \(\frac{238}{3}\)
Kotori Minami bạn có thể giải chi tiết ra duoc ko
gửi đến bạn vũ thu trang
4^6x9^5+6^9x120/8^4x3^12-6^11
= (2^2)^6.(3^2)^5 + (2.3)^9.3.5.2^3 / (2^3)^4.3^12 - (2.3)^11
= 2^12.3^10 + 2^9.3^9.3.5.2^3 / 2^12.3^12 - 2^11.3^11
= 2^12.3^10 + 2^12.3^10.5 / 2^11.2. 3^11.3 - 2^11.3^11
= 2^12.3^10.(1+5) / 2^11.3^11.(6-1)
= 2^12.3^10.6 / 2^11.3^11.5
= 4/5
Nhiwf bạn nên mình làm được bài này ! Hihi
Tính:
A) 212.35 -46.36/ 212.93+84.35
B) 496.5-711/(-7)10.5+2.495
1. Thực hiện phép tính :
a) \(\dfrac{20^5.5^{10}}{100^5}\)
b) \(\dfrac{49^6,5-7^{11}}{\left(-7\right)^{10}.5-2.49^5}\)
c) \(\dfrac{6^3+3.6^2+3^3}{-13}\)
d) \(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
e) A = \(1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{10}}\)
2. Cho các biểu thức :
A = 3 + 32 + 33 + 34+... + 336
a) C/minh A chia hết cho 4
b) C/minh A chia hết cho 13
c) C/minh A chia hết cho 52
Bài 1:
\(a)\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^5.5^5}{100^5}=\dfrac{100^5.3125}{100^5}=3125\)
2.
a)A có 36 sô hạng , chia A thành 18 nhóm , mỗi nhóm có 2 số hạng .
Ta có : A = \(\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{35}+3^{36}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{35}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{35}.4\)
\(A=4.\left(3+3^3+...+3^{35}\right)\)
Vậy A chia hết cho 4 .
b)Chia A thành 13 nhóm mỗi nhóm có 3 số hạng
Ta có : \(A=\left(3+3^2+3^3\right)+...+\left(3^{34}+3^{35}+3^{36}\right)\)
\(A=3.\left(1+3+9\right)+...+3^{34}.\left(1+3+9\right)\)
A=\(3.13+...+3^{34}.13\)
A= \(13.\left(3+..+3^{34}\right)\)
Vậy A chia hết cho 13
c) Tương tự như câu a và câu b
Bài 1:
b: \(=\dfrac{7^{12}\cdot5-7^{11}}{7^{10}\cdot5-2\cdot7^{10}}=\dfrac{7^{11}\cdot\left(7\cdot5-1\right)}{7^{10}\cdot3}=7\cdot\dfrac{34}{3}=\dfrac{238}{3}\)
c: \(=\dfrac{3^3\cdot2^3+3^3\cdot2^2+3^3}{-13}=\dfrac{3^3\cdot13}{-13}=-27\)
d: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\dfrac{4}{5}\)
tính\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^2.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^4.7^4}{5^9.7^3+5^92^3.7^3}\)\(=\frac{2^{12}\left(3^5-3^4\right)}{2^{12}\left(3^6+3^5\right)}-\frac{7^3\left(5^{10}-5^4.7^4\right)}{7^3\left(5^9+5^9.2^3\right)}\)
\(=\frac{3^5-3^4}{3^6+3^5}-\frac{5^{10}-5^4.7^4}{5^9+5^9.2^3}\)\(=\frac{3^4\left(3-1\right)}{3^4\left(3^2+3\right)}-\frac{5^4\left(5^6-7^4\right)}{5^4\left(5^5+5^5.2^3\right)}\)
\(=\frac{1}{6}-\frac{5^6-7^4}{5^5+5^5.2^3}\)cậu cứ phân tích từ từ
a, A = 110- (-761)+296+1454-(-813+1077)
b , B = 15.4^12.9^7-4.3^15.8^8/19.2^24.3^14-6.4^12.47^5
c , C = 2^50-2^49-2^48-2^47-...-2^2-2
a) A = 110 - (-761) + 296 + 1454 - (-813 + 1077)
= 110 + 761 + 296 + 1454 - 264
= 871 + 1750 - 264
= 2631 - 264
= 2357
Tính giá trị các biểu thức sau
f) \(\left(1:\frac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\frac{1}{49}\)
g)\(\frac{4^6.3^5-2^{12}.3^6}{2^{12}.9^3+8^4.3^5}\)
f) \(\left(1:\frac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\frac{1}{49}\)
\(=\left(1\cdot7\right)^2:\left(2^6:2^5\right)\cdot\frac{1}{49}=7^2\cdot\frac{1}{2}\cdot\frac{1}{49}=49\cdot\frac{1}{49}\cdot\frac{1}{2}=\frac{1}{2}\)
g) \(\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{\left(2^2\right)^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^5}\)
\(=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\left(3^5-3^6\right)}{2^{12}\left(3^6+3^5\right)}=\frac{2^{12}\left[3^5\left(1-3\right)\right]}{2^{12}\left[3^5\left(3+1\right)\right]}=\frac{2^{12}\cdot3^5\cdot\left(-2\right)}{2^{12}\cdot3^5\cdot4}=\frac{-2}{4}=-\frac{1}{2}\)
Bài giải
\(f,\text{ }\left(1\text{ : }\frac{1}{7}\right)^2\left[\left(2^2\right)^3\text{ : }2^5\right]\cdot\frac{1}{49}\)
\(=7^2\left(2^6\text{ : }2^5\right)\cdot\frac{1}{7^2}\)
\(=2\)
\(g,\text{ }\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\cdot3^5\cdot\left(1-3\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}=-\frac{2}{4}=-\frac{1}{2}\)
a) Tính A = 1 - 2 + 22 - 23 +...+ 2100
b) B = \(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^2.49^2}{\left(125.7\right)^3+5^9.14^3}\)