Tìm x: (6x+11).(5x-12)-42x+66=0
Phân tích đa thức thành nhân tử: 1)0.125.(a+1)³-1 Tính nhanh: 1)28.122-28.62+30.144 Tìm x: (6x+11).(5x-12)-42x+66=0
tìm x biết
\(\left(6x+11\right)\left(5y-12\right)-42x+16=0\)
\(\Leftrightarrow30xy-72x+55y-132-42x+16=0\)
\(\Leftrightarrow30xy-72x+55y-42x=0-16+132\)
........................................ Bạn tự làm tiếp nhé!!!
1, tính nhanh
a, 36.28+36.82+64.69+64.41
B, 13,5.5,8-8,3.4,2-5,8.8,3+4,2.14,5
C, 4,8.13,3+4,8.6,7+5,2.13,3+5,2.6,7
D, 7,8.55,1+92,2.55,1-7,8.5,1-99,2.5,1
E, 85.12,7+5.3.12,7
F, 52.143-52.39-8.26
G, 13.49+18.49-25.49+49.7
2, tìm x
(6x+11)(5y-12)-42x+66=0
a, 36.28+36.82 +64.69+64.41
=36(28+82)+64(69+41)
=36.110+64.110
=110(36+64)
=110.100
=11000
1, tính nhanh
a, 36.28+36.82+64.69+64.41
B, 13,5.5,8-8,3.4,2-5,8.8,3+4,2.14,5
C, 4,8.13,3+4,8.6,7+5,2.13,3+5,2.6,7
D, 7,8.55,1+92,2.55,1-7,8.5,1-99,2.5,1
E, 85.12,7+5.3.12,7
F, 52.143-52.39-8.26
G, 13.49+18.49-25.49+49.7
2, tìm x
(6x+11)(5y-12)-42x+66=0
Hơi mờ
Câu 2 không biết làm
Tìm x biết
a) 5x+2x=6^2-5^0
b)6x+x=5^11:5^9+3^1
c)5x+3x=3^6:3^3.4+12
a) 5x + 2x = 6^2 - 5^0
7x = 35
x=5
b) 6x + x = 5^11 : 5^9 + 3^1
7x = 28
x=4
c) 5x + 3x = 3^6 : 3^3 *4 +12
8x = 120
x=15
Bài 4. Tìm số nguyên x, biết:
a) (x2 −9)(5x+15) =0 |
|
| b) x2 – 8x= 0 |
c) 5+12.(x−1)2 = 53 |
|
| d) (x− 5)2 = 36 |
e) (3x+−5)3 = 64 |
|
| f) 42x + 24x+3 = 144 |
Lời giải:
a. $(x^2-9)(5x+15)=0$
$\Rightarrow x^2-9=0$ hoặc $5x+15=0$
Nếu $x^2-9=0$
$\Rightarrow x^2=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $-3$
Nếu $5x+15=0$
$\Rightarrow x=-3$
b.
$x^2-8x=0$
$\Rightarrow x(x-8)=0$
$\Rightarrow x=0$ hoặc $x-8=0$
$\Rightarrow x=0$ hoặc $x=8$
c.
$5+12(x-1)^2=53$
$12(x-1)^2=53-5=48$
$(x-1)^2=48:12=4=2^2=(-2)^2$
$\Rightarrow x-1=2$ hoặc $x-2=-2$
$\Rightarrow x=3$ hoặc $x=0$
d.
$(x-5)^2=36=6^2=(-6)^2$
$\Rightarrow x-5=6$ hoặc $x-5=-6$
$\Rightarrow x=11$ hoặc $x=-1$
e.
$(3x-5)^3=64=4^3$
$\Rightarrow 3x-5=4$
$\Rightarrow 3x=9$
$\Rightarrow x=3$
f.
$4^{2x}+2^{4x+3}=144$
$2^{4x}+2^{4x}.8=144$
$2^{4x}(1+8)=144$
$2^{4x}.9=144$
$2^{4x}=144:9=16=2^4$
$\Rightarrow 4x=4\Rightarrow x=1$
tìm X
(5x - 10) . (6x + 12) = 0
\(\Leftrightarrow x\in\left\{2;-2\right\}\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
(5x - 10) . (6x + 12) = 0
=>(5x - 10) = 0 hoặc (6x + 12) = 0
* TH1: (5x - 10) = 0 * TH2: (6x + 12) = 0
=>x = 2 => x = -2
Vậy x=2 hoặc x = -2
Tìm x
a) ( x + 7 ) - 25 = 135x + 2x =6^5 - 5^0
b) 5x + x = 150 : 2 + 3
c) 6x + x = 5^11 : 5^9 + 3^1
d) 5x + 3x = 3^6 : 3^3 . 4 + 12
x³ - 9x² + 6x + 16
x³ - x² - x - 2
x³ + x² - x + 2
x³ - 6x² - x + 30
x² - 7x - 6
27x³ - 27x² + 18x - 4
2x³ - x² + 5x + 3
(x² - 3)² + 16
a: \(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)
\(=\left(x-8\right)\left(x^2-x-2\right)\)
\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
b: \(x^3-x^2-x-2\)
\(=x^3-2x^2+x^2-2x+x-2\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)
\(=\left(x-2\right)\cdot\left(x^2+x+1\right)\)
c: \(x^3+x^2-x+2\)
\(=x^3+2x^2-x^2-2x+x+2\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-x+1\right)\)
d: \(x^3-6x^2-x+30\)
\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
e: Sửa đề: \(x^3-7x-6\)
\(=x^3-x-6x-6\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
f: \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
g: \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
h: \(\left(x^2-3\right)^2+16\)
\(=x^4-6x^2+9+16\)
\(=x^4-6x^2+25\)
\(=x^4+10x^2+25-16x^2\)
\(=\left(x^2+5\right)^2-\left(4x\right)^2\)
\(=\left(x^2+5+4x\right)\left(x^2+5-4x\right)\)