Cho a/b = c/d Chứng minh rằng : a+2b/2a-b = c+ 2b/ 2c-b
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\)≥3
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\).Chứng minh rằng
\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a+b}{2a-b}=\dfrac{2bk+b}{2bk-b}=\dfrac{2k+1}{2k-1}\)
\(\dfrac{2c+d}{2c-d}=\dfrac{2dk+d}{2dk-d}=\dfrac{2k+1}{2k-1}\)
=>\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
b: \(\dfrac{2a+b}{a-2b}=\dfrac{2bk+b}{bk-2b}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{2k+1}{k-2}\)
=>\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
Cho a, b, c là 3 cạnh của 1 tam giác. Chứng minh rằng : a/(-a+2b+2c) + b/(-b+2a+2c) + c/(-c+2a+2b) >=1
Cho a,b,c là số dương thỏa mãn a+b+c=3. Chứng minh rằng: \(a^2b+b^2c+c^2a\ge\dfrac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
Lời giải:
Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)
\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)
--------------------------
Áp dụng BĐT AM-GM ta có:
\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)
\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)
\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)
Cộng theo vế:
\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)
Vậy $(*)$ đúng
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho 2a + b + c + d/a = a + 2b + c + d/b = a + b+ 2c + d/c = a + b + c + 2d. Chứng minh rằng a = b = c
Theo bài ra ta có :
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}=\frac{0}{d}\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d\\a\ne b\ne c\ne d\end{cases}}\)(loại)
Nếu a + b + c + d \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)
=> a = b = c = d (đpcm)
cho 0<a,b,c<1.Chứng minh rằng:\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Cho 0<a;b;c<1 chứng minh rằng:
\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Do a,b<1 => a^3<a^2<a<1 ; b^3<b^2<b<1 ; ta có :
(1-a^2)(1-b) => 1+a^2b>a^2+b
=> 1+a^2b>a^3+b^3 hay a^3+b^3 <1+a^2b
Tương tự : b^3+c^3 < 1+b^2;c^3+a^3<1+c^2a
=> 2a^3+2b^3+2c^3<3+a^2b+b^2c+c^2a
Cho 0< a,b,c<1. Chứng minh rằng \(2a^3+2b^{^3}+2c^3< 3+a^2b+b^2c+c^2a\)