Tìm số tự nhiên n khi
16/ 2^n = 2
tìm số tự nhiên n để \(\frac{n^2+7}{n+7}\) là số tự nhiên
bài 2: tìm số tự nhiên n để \(\frac{n^2+8}{n+8}\) là số tự nhiên
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
bài 1: tìm số tự nhiên n biết:
2 + 4 + 6 +....+ (2n) = 756
bài 2: tìm số tự nhiên n sao cho p = ( n - 2 )(n2 + n - 5) là số nguyên tố.
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
Bài 2
\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.
Tìm n là số tự nhiên để H là số tự nhiên với : H =2n+2/n+2 + 5n+17/n+2 - 3n/n+2
tìm số tự nhiên n sao cho (n-2)/(n+1)+8/(n+1) là số tự nhiên
Ta có: n-2/(n+1)+8/(n+1)
=(n-2+8)/(n+1)
=n+6/(n+1)
=> n+1+5 chia hết cho n+1
=>5 chia hết cho n+1
=> n+1 /(in/) Ư(5)={-1;1;5;-5}
Mà n là số tự nhiên
=> n+1 /(in/) {1;5}
Ta có bảng sau:
n+1| 1 |5
n | 0 |4
VẬY n /(in/) {0;4}
/(in/)=\(in\)= thuộc nha mik viết lộn á
Tìm số tự nhiên n để phân số 2n+2/n+2 là số tự nhiên
Ta có:2n+2 chia hết n+2
2.(n+2) chia hết n+2
2.n+4 chia hết cho n+2
2n+2-2n+4 chia hết cho n+2
-6 chia hết cho n+2 hay n+2 thuộc Ư(-6)=+1 -1,2,-2,3,-3,6,-6
Bạn lập bảng
n+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n |
Kết quả bạn tự tính và cái nào thuộc Z thì bạn chọ nha!!Nhớ k cho mk
tìm số tự nhiên có 5 chữ số,biết rằng nếu viết thêm số 2 vào đằng sau số đó thì được số lớn gấp ba lần số có được bằng các viết thêm chữ số hai vào đăng trước số đó.
câu 1: Tìm số tự nhiên n để n2 + 3 chia hết cho n+ 2
câu 2: Tìm số tự nhiên n để (3n+14) chia hết cho n+1
tìm số tự nhiên n để cac biểu thức sau là số tự nhiên: b= (2n+2/n+2)+(5n+17/n+2)-(3n/n+2)
Tìm số tự nhiên n để biểu thức: A =\(\dfrac{n+7}{n+2}\) là số tự nhiên
ĐKXĐ: \(n\in N\)
Để A là số tự nhiên thì \(\left\{{}\begin{matrix}n+7⋮n+2\\\dfrac{n+7}{n+2}>=0\end{matrix}\right.\)
=>\(n+5+2⋮n+2\)
=>\(n+2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{-1;-3;3;-7\right\}\)
mà n là số tự nhiên
nên n=3
Để A là số tự nhiên thì n+7⋮n+2
=> (n+2)+5⋮n+2. Vì n+2⋮n+2 nên 5⋮n+2
=> n + 2 ∈ Ư(5)∈{-5;-1;1;5} => n∈{-7;-3;-1;3}
Mà n phải là số tự nhiên nên n = 3
4. Thương của 2 số tự nhiên = 165. Nếu số tự nhiên bớt đi 143 thì thương là 154. Tìm 2 số tự nhiên ?
5. Chứng tỏ rằng n.(n + 3) là số chẵn với mọi số tự nhiên n ?
a/ Theo đề bài số bị chia bằng 165 lần số chia. Nếu bớt số bị chia đi 143 thì số bị chia mới gấp 154 lần số chia
Nếu chia số chia là 1 phần thì số bị chia ban đầu là 165 phần và số bị chia mới là 154 phần
Xét số bị chia ban đầu và số bị chia mới Hiệu số phần bằng nhau là
165-154=11 phần
Giá trị 1 phần hay số chia là
143:11=13
Số bị chia ban đầu là
13x165=2145
5/
Nếu n chẵn => n+3 lẻ => n(n+3) chẵn
Nếu n lẻ => n+3 chẵn => n(n+3) chẵn
=> n(n+3) chẵn với mọi n
tìm số tự nhiên n để n+3 là 2 số tự nhiên