Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cấn Minh Khôi
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Lâm Hương Giang
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
26 tháng 12 2017 lúc 20:37

2) Ta có : a = 10n + 8 

Vì 10n = 2n.5nên chia hết cho 2

Mà 8 chia hết cho 2 

Nên : a = 10n + 8 chia hết cho 2

Ta có : a = 10n + 8 = 10......08 [(n + 1) số 0]

=> 1 + 0 + 0 + .... + 0 + 8 (n + 1 số 0 ) 

= 9 chia hết cho 3;9 

Trần Đặng Phan Vũ
26 tháng 12 2017 lúc 20:50

1) đem chia p cho 2 xảy ra 2 trường hợp về số dư : dư 0 hoặc dư 1

+) nếu \(p\) chia cho 2 dư 0 \(\Rightarrow\) \(p⋮2\) ; mà \(p\) là số nguyên tố \(\Rightarrow p=2\)

khi đó \(p+3=2+3=5\) ( thỏa mãn )

           \(p+5=2+5=7\) ( thỏa mãn )

            \(p+11=2+11=13\) ( thỏa mãn )

+) nếu \(p\) chia cho 2 dư 1\(\Rightarrow\) \(p=2k+1\) ( \(k\in\) N* )

khi đó \(p+11=2k+1+11=2k+12=2\left(k+6\right)⋮2\)

mà \(p+11>2\Rightarrow p+11\) là hợp số ( loại )

vậy \(p=2\)

ミ★ήɠọς τɾίếτ★彡
27 tháng 12 2020 lúc 14:27

1)

xét p=2k+1

thì p+3=2k+1+3=2k+4(ko thỏa mãn)

     p+5=2k+1+5=2k+6(ko thỏa mãn)

     p+11=2k+1+11=2k+12(ko thỏa mãn)

=>P không phải là số lẻ

xét p=2k

thì p+3=2k+3(thỏa mãn )

     p+5=2k+5(thỏa mãn)

     p+11=2k+11(thỏa mãn)

=>P là số chẵn 

vì P là số nguyên tố mà 2 là số nguyên tố chẵn duy nhất 

=>p=2 ;xét p=2

thì p+3=2+3=5

    p+5 =2+5=7         (tất cả đều là số nguyên tố )

    p+11=2+11=13

vậy p=2

Hà Tiên
Xem chi tiết
ミ★ғox♥️ʀồɴԍ★彡乡
5 tháng 12 2021 lúc 9:10

1, Số tận cùng là 4 thì chia hết cho 2                            Đ

2, Số chia hết cho 2 thì có chữ số tận cùng là 4         Đ

3, Số chia hết cho 5 thì có chữ số tận cùng là 5         Đ

4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7            S

5, Số chia hết cho 9 có thể chia hết cho 3                       Đ

6, Số chia hết cho 3 có thể chia hết cho 9                      S

7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9               S

8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r                  Đ

9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó                    S

10, Hợp số là số tự nhiên nhiều hơn 2 ước                Đ

11, Một số nguyên tố đều là số lẻ                        S

12, không có số nguyên tố nào có chữ số hàng đơn vị là 5                        S

13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8              Đ

14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số                 Đ

15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố              Đ

16, Hai số nguyên tố là hai số nguyên tố cùng nhau                             S

17, Hai số 8 và 25 là hai số nguyên tố cùng nhau                         S

ht

Khách vãng lai đã xóa
Hoàng Minh Quân
Xem chi tiết
kid kaito
Xem chi tiết
Thái Hoàng Thiên Nhi
8 tháng 5 2017 lúc 13:20

ai muốn kết bn với tớ thì hãy click cho tớ nhé

Nguyễn Quỳnh Trang
Xem chi tiết
Tô Minh Sơn
14 tháng 7 2017 lúc 21:07

a, vì trong 3 số đó có số chia hết cho 3

b, vì trong 3 số lẻ có số chia hết cho 3

c, vì 6 số thì sẽ 3 cặp có tổng tương đương và cặp ở giữa là 2 số liên tiếp có tổng là số lẻ cho nên 3 cặp đó sẽ bằng tổng nhau nhân lên 3 lần lên 6 số liên tiếp ko chia hết cho 6 mà chỉ chia hết cho 3.

Beyond The Scence
14 tháng 7 2017 lúc 21:29

a)Gọi 3 số chẵn liên tiếp là 2n;2n+2;2n+4.Theo bài ra ta có: \(\left(2n+2n+2+2n+4\right)⋮3\)

\(2n+2n+2+2n+4=6n+6\)

                                                      \(=6\left(n+1\right)\) 

                                                      \(=\left[3.2\left(n+1\right)\right]⋮3\)=>Điều phải chứng minh.

b)Gọi 3 số lẻ liên tiếp là 2n+1;2n+3 và 2n+5.Theo bài ra ta có: \(\left(2n+1+2n+3+2n+5\right)⋮3\)

\(2n+1+2n+3+2n+5=6n+9\)

                                                               \(=\left[3\left(2n+3\right)\right]⋮3\) =>Điều phải chứng minh.

c)Gọi 6 số nguyên liên tiếp là n;n+1;n+2;...;n+5.Theo bài ra ta có:

\(\left(n+n+1+n+2+n+3+n+4\right)⋮5\)

\(=5n+10\) 

\(=\left[5\left(n+2\right)\right]⋮5\)=>Điều phải chứng minh.

\(\left(n+n+1+n+2+n+3+n+4+n+5\right)\)không \(⋮6\)

\(=6n+15\) .Vì \(15\) không \(⋮6\)=> \(6n+15\)không \(⋮6\).

T_i_c_k cho mình nha.

Thank you so much!Wish you would better at Math ^^

IS
22 tháng 2 2020 lúc 20:10

a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3 
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5

chúc bạn học tốt !!!

Khách vãng lai đã xóa
trần minh khôi
Xem chi tiết
trần minh khôi
Xem chi tiết
Đỗ Tuệ Lâm
11 tháng 5 2022 lúc 4:42

BN THAM KHẢO:

undefined