Cho p là số nguyên tố lẻ và a,b,c,d là các số nguyên dương nhỏ hơn p đồng thời a2+b2 chia hết cho p và c2+d2 chia hết cho p.C/m: Trong 2 số ac+bd và ad+bc có một và chỉ một số chia hết cho p
cho a,b là số nguyên dương lớn hơn 1. giả sử a^1945 +b^1945 và a^1954 +b^1954 đều chia hết cho 2001. cmr a,b đều chia hết cho 2001
Cho các số nguyên tố p, q, r và n là số tự nhiên lẻ thỏa mãn: pn + qn = r2
CMR: n = 1
Cho p là số nguyên tố lớn hơn 3. CMR
a) (p-1)(p+1) chia hết cho 24
b) p4 - 1 chia hết cho 48
tìm tất cả các số nguyên dương lẻ n sao cho +1 chia hết cho n
Biết a,b là các số nguyên dương thỏa mãn a2-ab+b2 chia hết cho 9. Chứng minh rằng cả a và b đều chia hết cho 3.
Cho P là số nguyên tố lớn hơn 5. Chứng minh: \(P^{20}-1\) chia hết cho 100
Cho p là số nguyên tố lớn hơn 5. Chứng minh: \(p^{20}-1\) chia hết cho 100
Cho P là số nguyên tố lớn hơn 5. Chứng minh: \(P^{20}-1\) chia hết cho 100