Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Khanh
Xem chi tiết
Hiếu Thông Minh
26 tháng 8 2018 lúc 14:19

\(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}\)

=\(\frac{2002\sqrt{2003}}{\sqrt{2003}.\sqrt{2003}}+\frac{2003\sqrt{2002}}{\sqrt{2002}.\sqrt{2002}}\)

=\(\frac{\sqrt{2002}.\sqrt{2002}.\sqrt{2003}}{\sqrt{2003}.\sqrt{2003}}+\frac{\sqrt{2003}.\sqrt{2003}.\sqrt{2002}}{\sqrt{2002}.\sqrt{2002}}\)

>\(\frac{\sqrt{2002}.\sqrt{2002}.\sqrt{2003}+\sqrt{2003}.\sqrt{2003}.\sqrt{2002}}{\sqrt{2003}.\sqrt{2002}}\)

>\(\frac{\sqrt{2002}.\sqrt{2003}.\left(\sqrt{2002}+\sqrt{2003}\right)}{\sqrt{2003}.\sqrt{2002}}\)

>\(\sqrt{2002}+\sqrt{2003}\)

=>\(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}\)>\(\sqrt{2002}+\sqrt{2003}\)(dpcm)

Ngo Anh Ngoc
Xem chi tiết
hai tran
31 tháng 8 2017 lúc 20:08

căn 2002 bình phương phần căn 2003 + căn 2003 bình phương  phần căn 2002 lớn hơn .....

tự nghĩ mik làm đến đây thôi bạn chỉ cần chuyển vế và làm mấy bước nữa thì xong

pham thi thu trang
Xem chi tiết
nguyễn bảo
29 tháng 11 2017 lúc 12:41

cái này quen quen

pham thi thu trang
29 tháng 11 2017 lúc 13:33

đó, bt hôm qua, quen cái j, cách của m ko làm ra 

trần thành đạt
4 tháng 12 2017 lúc 21:31

hình như đề sai

Lê Thị Khánh Huyền
Xem chi tiết
Phạm Phương Anh
5 tháng 8 2018 lúc 20:42

Đặt \(\sqrt{2002}=a,\sqrt{2003=b}\)

Ta có:

VT = \(\dfrac{a^2}{b}+\dfrac{b^2}{a}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng engel ta có:

\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\)

hay \(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}\ge\sqrt{2002}+\sqrt{2003}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b\)

\(a\ne b\)

\(\Rightarrow\)\(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)(đpcm)

Nguyễn Hữu Cường
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2022 lúc 13:59

Đặt 2002=a; 2003=b

Theo đề, ta có:

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}>\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}>\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{a}>0\)

\(\Leftrightarrow a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)>0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(\sqrt{a}+\sqrt{b}\right)>0\)(luôn đúng)

Nguyễn Huyền Anh
Xem chi tiết
soyeon_Tiểubàng giải
15 tháng 5 2017 lúc 11:38

\(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}\)

\(=\dfrac{2002+1}{\sqrt{2003}}+\dfrac{2013-1}{\sqrt{2002}}+\dfrac{1}{\sqrt{2002}}-\dfrac{1}{\sqrt{2003}}\)

\(=\sqrt{2003}+\sqrt{2002}+\dfrac{1}{\sqrt{2002}}-\dfrac{1}{\sqrt{2003}}\)

\(>\sqrt{2003}+\sqrt{2002}+\dfrac{1}{\sqrt{2003}}-\dfrac{1}{\sqrt{2003}}=\sqrt{2003}+\sqrt{2002}\left(đpcm\right)\)

Hảo Đào thị mỹ
Xem chi tiết
Đỗ Lê Tú Linh
25 tháng 5 2016 lúc 11:00

\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)

\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)

\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)

\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)

=> không có giá trị x,y,z thỏa mãn đề

erffsdaseefd
Xem chi tiết
giang ho dai ca
Xem chi tiết
Trần Tuyết Như
22 tháng 5 2015 lúc 21:24

mình giải bằng casio ra x = 0,767591877

Lê Hải Anh
13 tháng 12 2018 lúc 20:53

sao bạn lại có chữ hiệp sĩ ở bên cạnh tên vậy?

sao vậy bạn

k mk nha

tth_new
16 tháng 6 2019 lúc 9:07

Em thử ạ!

Đặt \(\sqrt[3]{3x^2-x+2011}=a;\sqrt[3]{3x^3-7x+2002}=b;\sqrt[3]{6x-2003}=c\)

Thì được: \(a^3-b^3-c^3=2002\) (1)

Mặt khác theo đề bài \(\left(a-b-c\right)^3=2002\) (2)

Từ (1) và (2) ta được: \(a^3-b^3-c^3-\left(a-b-c\right)^3=0\)

\(\Leftrightarrow3\left(b-a\right)\left(c-a\right)\left(c+b\right)=0\)

\(\Leftrightarrow a=b\text{ hoặc: }c=a\text{ hoặc }c+b=0\)

+) Với a=  b thì \(a^3=b^3\Leftrightarrow3x^2-x+2001=3x^2-7x+2002\)

\(\Leftrightarrow6x-1=0\Leftrightarrow x=\frac{1}{6}\)

... Anh làm tiếp thử ạ.