Tìm x
(3x+4)3=(9x-8)*(3x2-8)
(5x-4)2=(9x-8)*(3x2-8)
Giải các phương trình sau:
a, x2 - 9x +20 = 0
b, x2 - 3x - 18 = 0
c, 2x2 - 9 x + 9 = 0
d, 3x2 - 8x + 4 = 0
e, 3x3 - 6x2 - 9x = 0
f, x(x - 5) - 2 + x = 0
g, x3 + 32 + 6x +8 = 0
h, 2x(x - 2) - 2 + x = 0
i, 5x(1 - x) + x - 1 = 0
k, 4 - 9(x - 1)2 = 0
l, (x - 2)2 - 36(x + 3)2 = 0
\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)
d: \(\Leftrightarrow3x^2-6x-2x+4=0\)
=>(x-2)(3x-2)=0
=>x=2 hoặc x=2/3
e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)
=>x(x-3)(x+1)=0
hay \(x\in\left\{0;3;-1\right\}\)
f: \(\Leftrightarrow x^2-5x-2+x=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow\left(x-2\right)^2=6\)
hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)
Giải phương trình
1) 2x ( x – 3 ) + 5 ( x – 3 ) = 0
2) ( x2 – 4 ) – ( x – 2 ) ( 3 – 2x ) = 0
3) ( 2x – 1 )2 – ( 2x + 5 )2 = 11
4) ( 2x + 1 )2 ( 3x – 5 ) = 4x2 – 1
5) 3x2 – 5x – 8 = 0
6) ( 2x + 1 )2 ( 3x – 5 ) = 4x2 – 1
7) 3x2 – 5x – 8 = 0
8) \(\left|x-5\right|=3\)
9) \(\left|2x-5\right|=3-x\)
10) \(\left|2x+1\right|=\left|x-1\right|\)
11) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
12) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
1) Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
2) Ta có: \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3) Ta có: \(\left(2x-1\right)^2-\left(2x+5\right)^2=11\)
\(\Leftrightarrow4x^2-4x-1-4x^2-20x-25=11\)
\(\Leftrightarrow-24x=11+1+25=37\)
hay \(x=-\dfrac{37}{24}\)
5) Ta có: \(3x^2-5x-8=0\)
\(\Leftrightarrow3x^2+3x-8x-8=0\)
\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{3}\end{matrix}\right.\)
8) Ta có: \(\left|x-5\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
10) Ta có: \(\left|2x+1\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x-1\\2x+1=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-1\\2x+x=1-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
Thực hiện phép tính:
a,4.(x+3)/3x2-x : x2+3x/1-3x
b, x+1/x2-2x-8 . 4-x/x2+x
c, 9x+5/2(x-1)(x+3)2- 5x-7/2(x-1)(x+3)2
d, 18/(x-3)(x2-9)-3/x^2-6x+9-x/x^2-9
e, 1/x2-x+1+1/1-x2+2/x3+1
Tìm x, biết:
a) 2(5x-8)-3(4x-5) = 4(3x-4) + 11;
b) 2 x ( 6 x - 2 x 2 ) + 3 x 2 ( x - 4 ) = 8;
c) 2 ( x 3 - 1 ) - 2 x 2 ( x + 2 x 4 ) + ( 4 x 5 + 4 ) x = 6;
d)(2x)2(4x-2)-(x3 -8x2) = 15.
a) x = 2 7 b) x = 2.
c) x = 2 d) x = 1.
a)(-3x2+5x2-9x+15):(-3x+5)
b)(x4-2x3+2x-1):(x2-1)
c)(5x4+9x3-2x2-4x-8):(x-1)
d)(5x3+14x2+12x+8):(x+2)
b: \(\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
c: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
\(=5x^3+14x^2+12x+8\)
Tìm hệ số của mỗi đa thức sau
a) f (x) = 3x2 + 5x3 - 7x - 9
b) g(x) = 8x2 + 8 - 2x3 - 3x2 - 9x + 2x3 - 5
a) f (x) = 3x2 + 5x3 - 7x - 9
Hệ số cao nhất là: 5
Hệ số tự do là: 9
b) g(x) = 8x2 + 8 - 2x3 - 3x2 - 9x + 2x3 - 5
g(x) = ( 8x2 - 3x2) + ( 8-5) + ( -2x3 + 2x3) -9x
g(x) = 5x2 + 3 -9x
Hệ số cao nhất là: 5
Hệ số tự do là: 3
a) f (x) = 3x2 + 5x3 - 7x - 9
Hệ số cao nhất là: 5
Hệ số tự do là: 9
b) g(x) = 8x2 + 8 - 2x3 - 3x2 - 9x + 2x3 - 5
g(x) = ( 8x2 - 3x2) + ( 8-5) + ( -2x3 + 2x3) -9x
g(x) = 5x2 + 3 -9x
Hệ số cao nhất là: 5
Hệ số tự do là: 3
tìm x biết :
(1-3x2) - (x-2)(9x+1) = (3x-4)(3x+4)-9(x+3)2
(1-3x2)-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)2
⇒1-3x2-(9x2+x-18x-2)=9x2-16-9(x2+6x+9)
⇒1-3x2-(9x2-17x-2)= -56x-97
⇒1-3x2-9x2+17x+2=-56x-97
⇒3-12x2+17x=-56x-97
⇒3-12x2+17x+56x+97=0
⇒-12x2+73x+100=0
⇒-(12x2-73x-100)=0
a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
b) \(2x^3-5x^2+3x=0\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)
\(TH_1:3x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
\(TH_2:-2x-7=0\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)
b) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)
\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(TH_1:x=0\)
\(TH_2:x-1=0\)
\(\Leftrightarrow x=1\)
\(TH_3:2x-3=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)
\(TH_1:3x+4=0\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
\(TH_2:2x-4=0\)
\(\Leftrightarrow x=2\)
Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Rightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x-9x=-6-16+12\)
\(\Leftrightarrow11x=-10\)
\(\Leftrightarrow x=-\dfrac{10}{11}\)
Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)
a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow3x+1=5x+8\)
\(\Leftrightarrow3x-5x=8-1\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=\dfrac{-7}{2}\)
Vậy \(X=\dfrac{-7}{2}\)
b) Ta có: \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow9x^2-16-3x^2-4x=0\)
\(\Leftrightarrow6x^2-4x-16=0\)
\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)
\(\Leftrightarrow3x^2-6x+4x-8=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Leftrightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x+16-12-9x+6=0\)
\(\Leftrightarrow11x+10=0\)
\(\Leftrightarrow x=\dfrac{-10}{11}\)
Vậy \(x=\dfrac{-10}{11}\)
a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\-2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\-2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)
Giải phương trình sau:
a) 3x2 + 5x + 2 = 0
b) \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\)
\(a,3x^2+5x+2=0\\ \Leftrightarrow\left(3x^2+3x\right)+\left(2x+2\right)=0\\ \Leftrightarrow3x\left(x+1\right)+2\left(x+1\right)=0\\ \Leftrightarrow\left(3x+2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-1\end{matrix}\right.\)
b, ĐKXĐL\(x\ne\pm\dfrac{2}{3}\)
\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\\ \Leftrightarrow\dfrac{\left(3x+2\right)^2}{\left(3x+2\right)\left(3x-2\right)}-\dfrac{6\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\dfrac{9x^2}{\left(3x+2\right)\left(3x-2\right)}=0\\ \Leftrightarrow\dfrac{9x^2+12x+4-18x+12-9x^2}{\left(3x+2\right)\left(3x-2\right)}=0\\ \Leftrightarrow-6x+16=0\\ \Leftrightarrow x=\dfrac{8}{3}\left(tm\right)\)