(2018x-2017)2018 = (2018x-2017)2017
tinh p=x\(^{15}\)-2018x\(^{14}\)+2018x\(^{13}\)-2018x\(^{12}\)+...+2018x\(^3\)-2018x\(^2\)+2018x-2018 ;voi x=2017
Ta có: x=2017
nên x+1=2018
Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)
\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)
=-1
\(2017\sqrt{2017x-2016}+\sqrt{2018x-2017}=2018\)
Cho x = 2017. Tính giá trị của đa thức
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-2018x^{2015}+...+2018x^2-2018x+1\)
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-...-2018x+1\)
Vì \(x=2017\)
\(\Leftrightarrow x+1=2018\)
Thay vào P(x) ta được :
\(P\left(x\right)=x^{2017}-x^{2017}\left(x+1\right)+x^{2016}\left(x+1\right)-...-x\left(x+1\right)+1\)
\(P\left(x\right)=x^{2017}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...-x^2-x+1\)
\(P\left(x\right)=-x^{2018}+1\)
\(P\left(x\right)=-2017^{2018}+1\)
Giải phương trình: \(2017\sqrt{2017x-2016}+\sqrt{2018x-2017}=2018\)
ĐK: \(x\ge\frac{2017}{2018}\)
\(pt\Leftrightarrow2017\sqrt{2017x-2016}-2017+\sqrt{2018x-2017}-1=0\)
\(\Leftrightarrow2017\frac{2017\left(x-1\right)}{\sqrt{2017x-2016}+1}+\frac{2018\left(x-1\right)}{\sqrt{2018x-2017}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}\right)=0\)
Dễ thấy với \(x\ge\frac{2017}{2018}\Rightarrow\)\(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}>0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Cho x \(=\)2017, Tính giá trị biểu thức
A\(=\)\(x^9-2018x^8+2018x^7-2018x^6+2018x^5-2018x^4-2018x^3-2018x^2+2018x-2018\)
\(A=x^9-2018x^8+2018x^7-2018x^6+2016x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)
\(A=x^9-\left(2017+1\right)x^8+\left(2017+1\right)x^7-...+\left(2017+1\right)x-\left(2017+1\right)\)
\(A=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-...+\left(x+1\right)x-x-1\)
\(A=x^9-x^9-x^8+x^8+x^7-...+x^2+x-x-1\)
\(A=-1\)
Mk sửa lại đề. bn tham khảo nha!!!
\(x=2017\)\(\Rightarrow\)\(x+1=2018\)
Ta có: \(A=x^9-2018x^8+2018x^7-2018x^6+2018x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)
\(=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+1\right)\)
\(=x^9-x^9-x^8+x^8+x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-1\)
\(=1\)
Tính P (2017) biết rằng:
P (x)=x^2017- 2018x^2016+2018x^2015-2018x^2014+...-2018x^2+2018x-1
GIÚP MÌNH VỚI!!!!PLEASE!!!!😖😖😖
P(x)= x^2017 - 2018x^2016+ 2018x^2015+...-2018x^2 + 2018x-1
=> P(x)= x^2017 -2017x^2016-x^2016 + 2017x^2015 + x^2015+..-2017x^2-x^2 + 2017x+x-1
=> P(x)= x^2016(x-2017) -x^2015(x-2017)+...- x(x -2017)+ x-1
thay x=2017 vào p(x) ta được
p(2017)= 2016
tính đi đã thức hay đơn thức ý các bạn hộ mình với ạ!!!mơn@@
F=x^11-2018x^10-2018x^9-2018x^8-2018x^7-...-2018x-2017 với x=2105 ( hình như x=2017 hay sao ý ạ)
cho A= x10 - 2018x9+2018x8-2018x7+2018x6-....-2018x+2018
Tính giá trị của biểu thức A tại x=2017
CÁC BẠN GIẢI GIÚP HỘ MÌNH, MÌNH CẦN GẤP Ạ!
CẢM ƠN Ạ!!
Vì \(x=2017\Rightarrow x+1=2018\)
Thay \(x+1=2018\)vào biểu thức A ta được :
\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+\left(x+1\right)\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)
\(=1\)
Tại x=2017 thì 2018 = x + 1
Khí đó \(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)
\(=1\)
Tính \(A=x^5-2018x^4+2018x^3-2018x^2+2018x-1000\) tại x=2017
Lời giải:
Ta có:
\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-1000\)
\(A=(x^5-2017x^4)-(x^4-2017x^3)+(x^3-2017x^2)-(x^2-2017x)+x-1000\)
\(A=x^4(x-2017)-x^3(x-2017)+x^2(x-2017)-x(x-2017)+x-1000\)
Tại \(x=2017\Rightarrow A=2017^4.0-2017^3.0+2017^2.0-2017.0+2017-1000\)
\(A=2017-1000=1017\)