Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hữu kim
Xem chi tiết
Minh Lệ
3 tháng 8 2023 lúc 17:47

\(\left\{{}\begin{matrix}x-y=4\\xy=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y\left(y+4\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left[{}\begin{matrix}y=-2+\sqrt{5}\\y=-2-\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

Với \(y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\)

Với \(y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\)

\(\Rightarrow A=x^2+y^2=\left(-2+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2=\left(2-\sqrt{5}\right)^2+\left(-2-\sqrt{5}\right)^2=18\)

\(B=x^3+y^3\Rightarrow\left[{}\begin{matrix}B=\left(2+\sqrt{5}\right)^3+\left(-2+\sqrt{5}\right)^3=34\sqrt{5}\\B=\left(2-\sqrt{5}\right)^3+\left(-2-\sqrt{5}\right)^3=-34\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow C=x^4+y^4=\left(-2+\sqrt{5}\right)^4+\left(2+\sqrt{5}\right)^4=\left(2-\sqrt{5}\right)^4+\left(-2-\sqrt{5}\right)^4=322\)

nguyễn hữu kim
Xem chi tiết
Nguyễn Đức Trí
3 tháng 8 2023 lúc 17:40

a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)

\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)

\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)

b) \(27x^3-54x^2+36x=9\)

\(\Rightarrow27x^3-54x^2+36x-9=0\)

\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)

\(\Rightarrow\left(3x-2\right)^3-1=0\)

\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)

mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)

(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}

  27\(x^3\) - 54\(x^2\) + 36\(x\) = 9

27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1

(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1

 

 

 

 

 

Mạnh Dũng
3 tháng 8 2023 lúc 17:47

1

Đinh Hoàng Thuận
Xem chi tiết
ngonhuminh
6 tháng 2 2017 lúc 16:16

\(A=\frac{2002\left(x-1\right)+2003}{2003\left(x-1\right)}=\frac{2002}{2003}+\frac{1}{x-1}\)

=> x-1 phải là sô nguyên dương nhỏ nhất => x-1=1=> x=2

phú quảng nguyen
Xem chi tiết
Akai Haruma
16 tháng 12 2021 lúc 21:57

Bài 1:

$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$ 

$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$

$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$

 

Akai Haruma
16 tháng 12 2021 lúc 21:59

Bài 2:
$8x^3-32y-32x^2y+8x=0$

$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$

$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$

$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)

$\Leftrightarrow x=4y$

Khi đó:

$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$

Akai Haruma
16 tháng 12 2021 lúc 22:00

Bài cuối $x^21$ không rõ. Bạn xem lại.

nguyễn hữu kim
Xem chi tiết
Kiều Vũ Linh
3 tháng 8 2023 lúc 17:17

(x - 5)² = (3 + 2x)²

(x - 5)² - (3 + 2x)² = 0

[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0

(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0

(-x - 8)(3x - 2) = 0

-x - 8 = 0 hoặc 3x - 2 = 0

*) -x - 8 = 0

-x = 8

x = -8

*) 3x - 2 = 0

3x = 2

x = 2/3

Vậy x = -8; x = 2/3

--------------------

27x³ - 54x² + 36x = 9

27x³ - 54x² + 36x - 9 = 0

27x³ - 27x² - 27x² + 27x + 9x - 9 = 0

(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0

27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0

(x - 1)(27x² - 27x + 9) = 0

x - 1 = 0 hoặc 27x² - 27x + 9 = 0

*) x - 1 = 0

x = 1

*) 27x² - 27x + 9 = 0

Ta có:

27x² - 27x + 9

= 27(x² - x + 1/3)

= 27(x² - 2.x.1/2 + 1/4 + 1/12)

= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R

⇒ 27x² - 27x + 9 = 0 (vô lí)

Vậy x = 1

Kiều Vũ Linh
3 tháng 8 2023 lúc 17:48

A = x² + y²

= x² - 2xy + y² + 2xy

= (x - y)² + 2xy

= 4² + 2.1

= 16 + 2

= 18

B = x³ - y³

= (x - y)(x² + xy + y²)

= (x - y)(x² - 2xy + y² + xy + 2xy)

= (x - y)[(x - y)² + 3xy]

= 4.(4² + 3.1)

= 4.(16 + 3)

= 4.19

= 76

C = x⁴ + y⁴

= (x²)² + (y²)²

= (x²)² + 2x²y² + (y²)² - 2x²y²

= (x² + y²)² - 2x²y²

= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²

= [(x - y)² + 2x²y²]² - 2x²y²

= (4² + 2.1²)² - 2.1²

= (16 + 2)² - 2

= 18² - 2

= 324 - 2

= 322

Nguyễn Lê Phước Thịnh
3 tháng 8 2023 lúc 17:14

a: =>(2x+3)^2-(x-5)^2=0

=>(2x+3+x-5)(2x+3-x+5)=0

=>(x+8)(3x-2)=0

=>x=2/3 hoặc x=-8

b: =>27x^3-54x^2-36x-9=0

=>3x^3-6x^2-4x-1=0

=>\(x\simeq2,57\)

c: A=x^2+y^2=(x-y)^2+2xy=4^2+2=18

B=x^3-y^3=(x-y)^3+3xy(x-y)

=4^3+3*1*4

=64+12=76

C=(x^2+y^2)^2-2x^2y^2

=18^2-2*1^2=322

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 2 2019 lúc 18:13

Điều kiện xác định của phân thức: x ≠ 0, x ≠ 2

Ta có Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8

Với x = -Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8 thỏa mãn điều kiện xác định của phân thức ⇒ B = Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8

Phương Trần Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 23:31

b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)

Đặng Đúc Lộc
Xem chi tiết
Chúngmàykhóc Chắcgìđãkhổ...
Xem chi tiết
Bùi Thế Hào
23 tháng 3 2018 lúc 11:04

A=2003x(1+x+x2+...+x98+x99)

=> \(\frac{A}{2003x}=1+x+x^2+...+x^{98}+x^{99}\)

=> \(\frac{A.x}{2003x}=x+x^2+...+x^{98}+x^{99}+x^{100}\)=> \(\frac{A}{2003}=x+x^2+...+x^{98}+x^{99}+x^{100}\)

=> \(\frac{A}{2003}-\frac{A}{2003x}=\left(x+x^2+...+x^{98}+x^{99}+x^{100}\right)-\left(1+x+x^2+...+x^{98}+x^{99}\right)\)

=> \(\frac{A\left(x-1\right)}{2003x}=x^{100}-1\)=> \(A=\frac{2003x\left(x^{100}-1\right)}{x-1}\)

Thay x=2004 ta được: \(A=\frac{2003.2004\left(2004^{100}-1\right)}{2004-1}=2004\left(2004^{100}-1\right)\)

Đáp số: \(A=2004\left(2004^{100}-1\right)\)